A combination of rapid thermal processing and photochemical deposition for the growth of SiO2 suitable for InP device applications

A combination of ultraviolet and infrared lamps is used to obtain the growth of SiO2 on InP substrates at low temperature under rapid thermal processing conditions. Thorough infrared spectroscopy characterization of the dielectric layers shows that the ultraviolet‐assisted growth process without mercury sensitization leads to good quality silica interspersed with oxygen‐deficient inclusions. Rapid annealing improves them so as to be suitable for InP‐based field‐effect devices, with interface trap density around 5×1011 cm−2. A study of the interface trap density made with this technique shows the relevance of fast thermal processing, even at low growth temperatures, for the improvement of these devices.

[1]  W. Knolle,et al.  Hydrogen in semi‐insulating polycrystalline silicon films , 1980 .

[2]  M. Okuyama,et al.  Photo-Induced Chemical Vapor Deposition of SiO2Film Using Direct Excitation Process by Deuterium Lamp , 1984 .

[3]  J. K. Srivastava,et al.  Low‐temperature growth of silicon dioxide films: A study of chemical bonding by ellipsometry and infrared spectroscopy , 1987 .

[4]  Paul Siffert,et al.  Infrared characterization of UV laser‐induced silicon oxide films , 1988 .

[5]  Katsuhisa Usami,et al.  Infrared absorption spectra and compositions of evaporated silicon oxides (SiOx) , 1984 .

[6]  Y. Tarui,et al.  Low-Temperature Growth of Silicon Dioxide Film by Photo-Chemical Vapor Deposition , 1984 .

[7]  M. Tabe,et al.  UV Irradiation Effects on Chemical Vapor Deposition of SiO2 , 1985 .

[8]  R. Robertson,et al.  Silicon dioxide deposition at 100 °C using vacuum ultraviolet light , 1988 .

[9]  D. L. Lile,et al.  The effect of interfacial traps on the stability of insulated gate devices on InP , 1983 .

[10]  J. Regolini,et al.  Surface reactions of silane with oxidized InP and their application to the improvement of chemical vapor deposition grown, InP‐based metal‐insulator‐semiconductor devices , 1988 .

[11]  A. C. Adams,et al.  Characterization of Plasma‐Deposited Silicon Dioxide , 1981 .

[12]  A. Tate,et al.  Theoretical and experimental investigations on the deposition rate and processes of parallel incident laser-induced CVD , 1985 .

[13]  George Collins,et al.  Laser‐induced chemical vapor deposition of SiO2 , 1982 .

[14]  K. Pande,et al.  High mobility n‐channel metal‐oxide‐semiconductor field‐effect transistors based on SiO2‐InP interface , 1984 .

[15]  James F. Gibbons,et al.  Limited reaction processing: Silicon epitaxy , 1985 .

[16]  H. Nonaka,et al.  Photochemical vapor deposition of amorphous silica films using disilane and perfluorosilanes: Defect structures and deposition mechanism , 1988 .

[17]  J. Regolini,et al.  Low-pressure photochemical vapour deposition of silicon dioxide on InP substrates , 1988 .

[18]  Hideki Hasegawa,et al.  Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces , 1986 .

[19]  M. Kumeda,et al.  a-Si1-xOx:H Films Prepared by Direct Photo-CVD Using CO2 Gas , 1988 .

[20]  E. Krimmel,et al.  Photon, beam and plasma enhanced processing , 1987 .

[21]  Y. Su,et al.  Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition , 1990 .

[22]  David V. Tsu,et al.  Plasma enhanced chemical vapor deposition: Differences between direct and remote plasma excitation , 1987 .

[23]  E. H. Nicollian,et al.  The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique , 1967 .

[24]  E. Ritter Zur Kenntnis der SiO- und Si 2 O 3 -Phase in Dünnen Schichten , 1962 .

[25]  M. Okuyama,et al.  Low Temperature Growth of SiO2 Thin Film by Double-Excitation Photo-CVD , 1987 .