The 3-dimensional play of human parechovirus infection; Cell, virus and antibody

HPeV3 has been shown to be the ‘odd one out’ compared to the other genotypes; HPeV3 is more often associated with severe disease, infects significantly younger infants, seems to be more difficult to culture, and does not recombine with other HPeV types. The aim of this thesis is to study whether these differences could be explained by differences in viral tropism and Ab protection between the subsequent HPeV types. The first part of the thesis focuses on differences in viral tropism among HPeV types. In Chapter 2, we describe the growth characteristics of the different genotypes on different cell lines. To more extensively look into the differences between HPeV3 an HPeV1 related to the clinical outcome of infection, we describe the specific cell tropism and neutralization of human parechovirus types 1 and 3 in Chapter 3. To study the importance of the human airway as a primary replication site of HPeVs and differences in virus tropism, we determined replication kinetics of different HPeVs types in a human respiratory primary cell culture system (HAE) (Chapter 4). The second part of the manuscript focuses on neutralization of HPeVs. Chapter 5 describes the seroprevalence of neutralizing (protective) Abs among different groups in Finland and the Netherlands. The (cross-) neutralization of HPeVs by different HPeV1 and HPeV3 polyclonal and monoclonal Abs is extensively described in Chapter 6 and 8. Using cryo-EM, we determined the different neutralizing epitopes for HPeV1 (Chapter 7) and we revealed a high-resolution structure of HPeV3 (Chapter 9).

[1]  Human Parechovirus Infections , 2015, Red Book (2015).

[2]  D. Pajkrt,et al.  Clinical relevance of positive human parechovirus type 1 and 3 PCR in stool samples. , 2014, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[3]  G. Aldrovandi,et al.  Human Parechovirus Central Nervous System Infections in Southern California Children , 2014, The Pediatric infectious disease journal.

[4]  Maya Topf,et al.  Combined approaches to flexible fitting and assessment in virus capsids undergoing conformational change , 2014, Journal of structural biology.

[5]  Jiansheng Liu,et al.  An inactivated enterovirus 71 vaccine in healthy children. , 2014, The New England journal of medicine.

[6]  Wenbo Xu,et al.  Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. , 2014, The New England journal of medicine.

[7]  M. Furione,et al.  A case of neonatal human parechovirus encephalitis with a favourable outcome , 2014, Brain and Development.

[8]  Pei-Yin Lim,et al.  Neutralizing antibodies can initiate genome release from human enterovirus 71 , 2014, Proceedings of the National Academy of Sciences.

[9]  A. Palmenberg,et al.  Modeling of the human rhinovirus C capsid suggests a novel topography with insights on receptor preference and immunogenicity. , 2014, Virology.

[10]  Pablo Chacón,et al.  iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. , 2013, Journal of structural biology.

[11]  M. Kuroda,et al.  Epidemic myalgia associated with human parechovirus type 3 infection among adults occurs during an outbreak among children: findings from Yamagata, Japan, in 2011. , 2013, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[12]  D. Wolf,et al.  Human parechovirus type 3 central nervous system infections in Israeli infants. , 2013, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[13]  M. Lappalainen,et al.  First two cases of neonatal human parechovirus 4 infection with manifestation of suspected sepsis, Finland. , 2013, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[14]  M. Knip,et al.  Human parechovirus seroprevalence in Finland and the Netherlands. , 2013, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[15]  D. Pajkrt,et al.  Successful IVIG Treatment of Human Parechovirus-Associated Dilated Cardiomyopathy in an Infant , 2013, Pediatrics.

[16]  D. Stuart,et al.  Picornavirus uncoating intermediate captured in atomic detail , 2013, Nature Communications.

[17]  J. Navaza,et al.  Structure of the Triatoma virus capsid , 2013, Acta crystallographica. Section D, Biological crystallography.

[18]  B. Westerhuis,et al.  Growth characteristics of human parechovirus 1 to 6 on different cell lines and cross- neutralization of human parechovirus antibodies: a comparison of the cytopathic effect and real time PCR , 2013, Virology Journal.

[19]  H. Peigue-Lafeuille,et al.  [Epidemiology of parechovirus infections of the central nervous system in a French pediatric unit]. , 2013, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  F. Hu,et al.  A pathogenic picornavirus acquires an envelope by hijacking cellular membranes , 2013, Nature.

[21]  T. Hyypiä,et al.  Structural and Functional Analysis of Coxsackievirus A9 Integrin αvβ6 Binding and Uncoating , 2013, Journal of Virology.

[22]  Klaus Schulten,et al.  Atomic Model of Rabbit Hemorrhagic Disease Virus by Cryo-Electron Microscopy and Crystallography , 2013, PLoS pathogens.

[23]  C. Drosten,et al.  Two Cases of Sepsis-Like Illness in Infants Caused by Human Parechovirus Traced Back to Elder Siblings with Mild Gastroenteritis and Respiratory Symptoms , 2012, Journal of Clinical Microbiology.

[24]  E. Sanders,et al.  Prevalence and Clinical Course in Invasive Infections with Meningococcal Endotoxin Variants , 2012, PloS one.

[25]  R. Fuchs,et al.  Productive Entry Pathways of Human Rhinoviruses , 2012, Advances in virology.

[26]  D. Pajkrt,et al.  Specific cell tropism and neutralization of human parechovirus types 1 and 3: implications for pathogenesis and therapy development. , 2012, The Journal of general virology.

[27]  T. Kawanami,et al.  Epidemic Myalgia in Adults Associated with Human Parechovirus Type 3 Infection, Yamagata, Japan, 2008 , 2012, Emerging infectious diseases.

[28]  R. Selvarangan,et al.  Characteristics of Young Infants in Whom Human Parechovirus, Enterovirus or Neither Were Detected in Cerebrospinal Fluid During Sepsis Evaluations , 2012, The Pediatric infectious disease journal.

[29]  Maya Topf,et al.  RIBFIND: a web server for identifying rigid bodies in protein structures and to aid flexible fitting into cryo EM maps , 2012, Bioinform..

[30]  B. Dabirmanesh,et al.  Molecular detection of human parechovirus type 1 in stool samples from children with diarrhea. , 2012, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[31]  B. Lina,et al.  Human parechovirus infections, Lyon, France, 2008-10: evidence for severe cases. , 2012, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[32]  J. Ilonen,et al.  Human parechoviruses are frequently detected in stool of healthy Finnish children. , 2012, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[33]  T. Hyypiä,et al.  Structural Analysis of Coxsackievirus A7 Reveals Conformational Changes Associated with Uncoating , 2012, Journal of Virology.

[34]  T. Kuijpers,et al.  Pleconaril Revisited: Clinical Course of Chronic Enteroviral Meningoencephalitis after Treatment Correlates with In Vitro Susceptibility , 2012, Antiviral therapy.

[35]  Gwyndaf Evans,et al.  A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71 , 2012, Nature Structural &Molecular Biology.

[36]  Dieter Blaas,et al.  Insights into Minor Group Rhinovirus Uncoating: The X-ray Structure of the HRV2 Empty Capsid , 2012, PLoS pathogens.

[37]  Boris Katz,et al.  Detection of human parechovirus (HPeV)-3 in spinal fluid specimens from pediatric patients in the Chicago area. , 2011, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[38]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[39]  Martin H. Koldijk,et al.  A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses , 2011, Science.

[40]  Yi Yang,et al.  Prevalence and genotypes of human parechovirus in stool samples from hospitalized children in Shanghai, China, 2008 and 2009 , 2011, Journal of medical virology.

[41]  P. Simmonds,et al.  Comparison of human parechovirus and enterovirus detection frequencies in cerebrospinal fluid samples collected over a 5‐year period in edinburgh: HPeV type 3 identified as the most common picornavirus type , 2011, Journal of medical virology.

[42]  D. Pajkrt,et al.  The need for treatment against human parechoviruses: how, why and when? , 2010, Expert review of anti-infective therapy.

[43]  P. Khamrin,et al.  Human Parechovirus Infection in Children Hospitalized with Acute Gastroenteritis in Sri Lanka , 2010, Journal of Clinical Microbiology.

[44]  B. Westerhuis,et al.  Detection of human enterovirus and human parechovirus (HPeV) genotypes from clinical stool samples: polymerase chain reaction and direct molecular typing, culture characteristics, and serotyping. , 2010, Diagnostic microbiology and infectious disease.

[45]  M. Alirezaei,et al.  Type B coxsackieviruses and their interactions with the innate and adaptive immune systems. , 2010, Future microbiology.

[46]  D. Stuart,et al.  Crystal structure of equine rhinitis A virus in complex with its sialic acid receptor. , 2010, The Journal of general virology.

[47]  E. Delwart,et al.  Human Parechovirus Infections in Monkeys with Diarrhea, China , 2010, Emerging infectious diseases.

[48]  P. Simmonds,et al.  Parechoviruses in children: understanding a new infection , 2010, Current opinion in infectious diseases.

[49]  Ian R. Wickersham,et al.  Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons , 2010, Nature Protocols.

[50]  James M. Hogle,et al.  Catching a Virus in the Act of RNA Release: a Novel Poliovirus Uncoating Intermediate Characterized by Cryo-Electron Microscopy , 2010, Journal of Virology.

[51]  Martin H. Koldijk,et al.  New Class of Monoclonal Antibodies against Severe Influenza: Prophylactic and Therapeutic Efficacy in Ferrets , 2010, PloS one.

[52]  P. Khamrin,et al.  Novel Human Parechovirus, Sri Lanka , 2010, Emerging infectious diseases.

[53]  D. Pajkrt,et al.  Clinical Characteristics of Human Parechoviruses 4–6 Infections in Young Children , 2009, The Pediatric infectious disease journal.

[54]  D. Stuart,et al.  Equine Rhinitis A Virus and Its Low pH Empty Particle: Clues Towards an Aphthovirus Entry Mechanism? , 2009, PLoS pathogens.

[55]  H. Siljander,et al.  Predictive Characteristics of Diabetes-Associated Autoantibodies Among Children With HLA-Conferred Disease Susceptibility in the General Population , 2009, Diabetes.

[56]  M. Panayiotou,et al.  Evolution and conservation in human parechovirus genomes. , 2009, The Journal of general virology.

[57]  P. Simmonds,et al.  Specific association of human parechovirus type 3 with sepsis and fever in young infants, as identified by direct typing of cerebrospinal fluid samples. , 2009, The Journal of infectious diseases.

[58]  Joseph M. Campos,et al.  Human parechovirus-3 infection: emerging pathogen in neonatal sepsis. , 2009, The Pediatric infectious disease journal.

[59]  J. Drexler,et al.  Novel Human Parechovirus from Brazil , 2009, Emerging infectious diseases.

[60]  E. Delwart,et al.  Genomic Characterization of Novel Human Parechovirus Type , 2009, Emerging infectious diseases.

[61]  P. Simmonds,et al.  Direct identification of human enterovirus serotypes in cerebrospinal fluid by amplification and sequencing of the VP1 region. , 2009, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[62]  F. Lemonnier,et al.  Role of class I human leukocyte antigen molecules in early steps of echovirus infection of rhabdomyosarcoma cells. , 2008, Virology.

[63]  E. De Clercq,et al.  Selective inhibitors of picornavirus replication , 2008, Medicinal research reviews.

[64]  R. Molenkamp,et al.  High Prevalence of Human Parechovirus (HPeV) Genotypes in the Amsterdam Region and Identification of Specific HPeV Variants by Direct Genotyping of Stool Samples , 2008, Journal of Clinical Microbiology.

[65]  P. Hallenbeck,et al.  Structure of Seneca Valley Virus-001: an oncolytic picornavirus representing a new genus. , 2008, Structure.

[66]  O. Cinek,et al.  Longitudinal observation of parechovirus in stool samples from Norwegian infants , 2008, Journal of medical virology.

[67]  J. J. Fernández,et al.  Sharpening high resolution information in single particle electron cryomicroscopy. , 2008, Journal of structural biology.

[68]  L. D. de Vries,et al.  Human parechovirus causes encephalitis with white matter injury in neonates , 2008, Annals of neurology.

[69]  D. Pajkrt,et al.  Human parechoviruses as an important viral cause of sepsislike illness and meningitis in young children. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[70]  H. Vennema,et al.  Prevalence of Human Parechovirus in The Netherlands in 2000 to 2007 , 2008, Journal of Clinical Microbiology.

[71]  M. Pallansch,et al.  Detection of All Known Parechoviruses by Real-Time PCR , 2008, Journal of Clinical Microbiology.

[72]  P. Simmonds,et al.  Widespread recombination within human parechoviruses: analysis of temporal dynamics and constraints. , 2008, The Journal of general virology.

[73]  L. D. de Vries,et al.  Severe Neonatal Parechovirus Infection and Similarity With Enterovirus Infection , 2008, The Pediatric infectious disease journal.

[74]  Ben M. Webb,et al.  Protein structure fitting and refinement guided by cryo-EM density. , 2008, Structure.

[75]  J. Weel,et al.  Clinical validation of a new real-time PCR assay for detection of enteroviruses and parechoviruses, and implications for diagnostic procedures. , 2008, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[76]  Maria Nolano,et al.  WHITE MATTER DAMAGE IN NEONATAL ENTEROVIRUS MENINGOENCEPHALITIS , 2007, Neurology.

[77]  M. Higuchi,et al.  Isolation and Characterization of Novel Human Parechovirus from Clinical Samples , 2007, Emerging infectious diseases.

[78]  S. Virtanen,et al.  Maternal Antibodies in Breast Milk Protect the Child From Enterovirus Infections , 2007, Pediatrics.

[79]  T. Hyypiä,et al.  Intracellular localization and effects of individually expressed human parechovirus 1 non-structural proteins. , 2007, The Journal of general virology.

[80]  G. Stanway,et al.  Analysis of a New Human Parechovirus Allows the Definition of Parechovirus Types and the Identification of RNA Structural Domains , 2007, Journal of Virology.

[81]  Chun-Nan Lee,et al.  Differences in replication capacity between enterovirus 71 isolates obtained from patients with encephalitis and those obtained from patients with herpangina in Taiwan , 2007, Journal of medical virology.

[82]  C. Vandenbroucke-Grauls,et al.  Fourth Human Parechovirus Serotype , 2006, Emerging infectious diseases.

[83]  M. Pallansch,et al.  Enterovirus surveillance--United States, 1970-2005. , 2006, Morbidity and mortality weekly report. Surveillance summaries.

[84]  P. Simmonds Recombination and Selection in the Evolution of Picornaviruses and Other Mammalian Positive-Stranded RNA Viruses , 2006, Journal of Virology.

[85]  C. Cunningham-Rundles,et al.  X-Linked Agammaglobulinemia: Report on a United States Registry of 201 Patients , 2006, Medicine.

[86]  G. Boivin,et al.  Human Parechovirus Infections in Canada , 2006, Emerging infectious diseases.

[87]  B. Berkhout,et al.  Human parechovirus infections in Dutch children and the association between serotype and disease severity. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[88]  P. Simmonds,et al.  Frequency and Dynamics of Recombination within Different Species of Human Enteroviruses , 2006, Journal of Virology.

[89]  J. Ilonen,et al.  Human parechovirus 1 infections in young children—no association with type 1 diabetes , 2005, Journal of medical virology.

[90]  T. Hyypiä,et al.  Tissue tropism of recombinant coxsackieviruses in an adult mouse model. , 2005, The Journal of general virology.

[91]  G. Boivin,et al.  Human Parechovirus 3 and Neonatal Infections , 2005, Emerging infectious diseases.

[92]  A. Skowera,et al.  Identification of a Naturally Processed Cytotoxic CD8 T-Cell Epitope of Coxsackievirus B4, Presented by HLA-A2.1 and Located in the PEVKEK Region of the P2C Nonstructural Protein , 2004, Journal of Virology.

[93]  M. Rossmann,et al.  Structural and Virological Studies of the Stages of Virus Replication That Are Affected by Antirhinovirus Compounds , 2004, Journal of Virology.

[94]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[95]  T. Hyypiä,et al.  Specific Interaction between Human Parechovirus Nonstructural 2A Protein and Viral RNA* , 2004, Journal of Biological Chemistry.

[96]  D. Blaas,et al.  Cryoelectron Microscopy Analysis of the Structural Changes Associated with Human Rhinovirus Type 14 Uncoating , 2004, Journal of Virology.

[97]  N. Takeda,et al.  Isolation and identification of a novel human parechovirus. , 2004, The Journal of general virology.

[98]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[99]  O. Tournilhac,et al.  Molecular Evidence of Persistent Echovirus 13 Meningoencephalitis in a Patient with Relapsed Lymphoma after an Outbreak of Meningitis in 2000 , 2003, Journal of Clinical Microbiology.

[100]  T. Hyypiä,et al.  Pathogenesis of coxsackievirus A9 in mice: role of the viral arginine-glycine-aspartic acid motif. , 2003, The Journal of general virology.

[101]  J. Ilonen,et al.  Diagnostic Potential of Parechovirus Capsid Proteins , 2003, Journal of Clinical Microbiology.

[102]  A. Hämäläinen,et al.  Enterovirus infections as a risk factor for type I diabetes: virus analyses in a dietary intervention trial , 2003, Clinical and experimental immunology.

[103]  H-S Liu,et al.  Comparative study of enterovirus 71 infection of human cell lines , 2003, Journal of medical virology.

[104]  P. Sánchez,et al.  Double blind placebo-controlled trial of pleconaril in infants with enterovirus meningitis , 2003, The Pediatric infectious disease journal.

[105]  G. Stanway,et al.  Terminal RNA Replication Elements in Human Parechovirus 1 , 2002, Journal of Virology.

[106]  S. Huber,et al.  Vγ4+ T Cells Promote Autoimmune CD8+ Cytolytic T-Lymphocyte Activation in Coxsackievirus B3-Induced Myocarditis in Mice: Role for CD4+ Th1 Cells , 2002, Journal of Virology.

[107]  B. Lina,et al.  Encephalomyelitis due to human parechovirus type 1. , 2002, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[108]  Timothy S Baker,et al.  Structure of decay-accelerating factor bound to echovirus 7: A virus-receptor complex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[109]  T. Hyypiä,et al.  Mapping of tissue tropism determinants in coxsackievirus genomes. , 2002, The Journal of general virology.

[110]  H. Rotbart,et al.  Treatment of picornavirus infections. , 2002, Antiviral research.

[111]  G. Stanway,et al.  Arginine-Glycine-Aspartic Acid Motif Is Critical for Human Parechovirus 1 Entry , 2001, Journal of Virology.

[112]  D. Filman,et al.  Ab initio phasing of high-symmetry macromolecular complexes: successful phasing of authentic poliovirus data to 3.0 A resolution. , 2001, Journal of molecular biology.

[113]  K. Triantafilou,et al.  A biochemical approach reveals cell‐surface molecules utilised by Picornaviridae: Human Parechovirus 1 and Echovirus 1 , 2001, Journal of cellular biochemistry.

[114]  T. Hyypiä,et al.  Entry of Human Parechovirus 1 , 2001, Journal of Virology.

[115]  T. Hyypiä,et al.  Parechoviruses, a novel group of human picornaviruses , 2001, Annals of medicine.

[116]  A R Rees,et al.  WAM: an improved algorithm for modelling antibodies on the WEB. , 2000, Protein engineering.

[117]  B. Ronacher,et al.  The cellular receptor to human rhinovirus 2 binds around the 5‐fold axis and not in the canyon: a structural view , 2000, The EMBO journal.

[118]  P. Antonsson,et al.  The crystal structure of staphylococcal enterotoxin H: implications for binding properties to MHC class II and TcR molecules. , 2000, Journal of molecular biology.

[119]  T Kivioja,et al.  Local average intensity-based method for identifying spherical particles in electron micrographs. , 2000, Journal of structural biology.

[120]  A. S. Nateri,et al.  In Vivo and In Vitro Identification of Structural and Sequence Elements of the Human Parechovirus 5′ Untranslated Region Required for Internal Initiation , 2000, Journal of Virology.

[121]  T. Hyypiä,et al.  Antigenic properties of human parechovirus 1. , 2000, The Journal of general virology.

[122]  Y. Takada,et al.  Human Parechovirus 1 Utilizes Integrins αvβ3 and αvβ1 as Receptors , 2000, Journal of Virology.

[123]  Alasdair C. Steven,et al.  Molecular Tectonic Model of Virus Structural Transitions: the Putative Cell Entry States of Poliovirus , 2000, Journal of Virology.

[124]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[125]  Jordi Bella,et al.  Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor , 1999, The EMBO journal.

[126]  F. Rodríguez,et al.  The role of B lymphocytes in coxsackievirus B3 infection. , 1999, The American journal of pathology.

[127]  Y. Takada,et al.  Involvement of beta2-microglobulin and integrin alphavbeta3 molecules in the coxsackievirus A9 infectious cycle. , 1999, The Journal of general virology.

[128]  John E. Johnson,et al.  The crystal structure of cricket paralysis virus: the first view of a new virus family , 1999, Nature Structural Biology.

[129]  H. Rotbart Antiviral therapy for enteroviral infections. , 1999, The Pediatric infectious disease journal.

[130]  M. Pallansch,et al.  Typing of Human Enteroviruses by Partial Sequencing of VP1 , 1999, Journal of Clinical Microbiology.

[131]  L. Kinnunen,et al.  A new picornavirus isolated from bank voles (Clethrionomys glareolus). , 1999, Virology.

[132]  D. Stuart,et al.  The structure and function of a foot‐and‐mouth disease virus–oligosaccharide receptor complex , 1999, The EMBO journal.

[133]  J. Capeau,et al.  Enterocytic differentiation of the human Caco‐2 cell line correlates with alterations in integrin signaling , 1998, Journal of cellular physiology.

[134]  T. Hyypiä,et al.  Molecular analysis of human parechovirus type 2 (formerly echovirus 23). , 1998, The Journal of general virology.

[135]  D. Filman,et al.  Structure determination of echovirus 1. , 1998, Acta crystallographica. Section D, Biological crystallography.

[136]  M. Pallansch,et al.  Prolonged Replication of a Type 1 Vaccine-Derived Poliovirus in an Immunodeficient Patient , 1998, Journal of Clinical Microbiology.

[137]  M. Pallansch,et al.  Complete sequence of echovirus 23 and its relationship to echovirus 22 and other human enteroviruses. , 1998, Virus research.

[138]  J. Almond,et al.  Role for β2-Microglobulin in Echovirus Infection of Rhabdomyosarcoma Cells , 1998, Journal of Virology.

[139]  T. Hyypiä,et al.  Diagnosis and epidemiology of echovirus 22 infections. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[140]  Wai-ming Lee,et al.  Antibody-Mediated Neutralization of Human Rhinovirus 14 Explored by Means of Cryoelectron Microscopy and X-Ray Crystallography of Virus-Fab Complexes , 1998, Journal of Virology.

[141]  T. Marlovits,et al.  Structure of a Neutralizing Antibody Bound Monovalently to Human Rhinovirus 2 , 1998, Journal of Virology.

[142]  M. Engle,et al.  Caco‐2 cells express a combination of colonocyte and enterocyte phenotypes , 1998, Journal of cellular physiology.

[143]  T. Hyypiä,et al.  Antigenic sites of coxsackievirus A9. , 1998, Virology.

[144]  E. Domingo,et al.  Efficient neutralization of foot-and-mouth disease virus by monovalent antibody binding , 1997, Journal of virology.

[145]  T. Hyypiä,et al.  Cell-surface Interactions of Echovirus 22* , 1997, The Journal of Biological Chemistry.

[146]  D. Filman,et al.  Structural studies of poliovirus mutants that overcome receptor defects , 1997, Nature Structural Biology.

[147]  H. Zimmermann,et al.  Cell attachment and mouse virulence of echovirus 9 correlate with an RGD motif in the capsid protein VP1. , 1997, Virology.

[148]  G. Burns,et al.  Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry , 1997, Journal of virology.

[149]  D I Stuart,et al.  Structure of the complex of an Fab fragment of a neutralizing antibody with foot‐and‐mouth disease virus: positioning of a highly mobile antigenic loop , 1997, The EMBO journal.

[150]  M. Rossmann,et al.  The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. , 1997, Structure.

[151]  K. Dimock,et al.  The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55) , 1996, Journal of virology.

[152]  D. Blaas,et al.  Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. , 1996, The EMBO journal.

[153]  T. Hovi,et al.  Relative abundance of enterovirus serotypes in sewage differs from that in patients: clinical and epidemiological implications , 1996, Epidemiology and Infection.

[154]  T. Hyypiä,et al.  The coxsackievirus A9 RGD motif is not essential for virus viability , 1995, Journal of virology.

[155]  H. Zimmermann,et al.  Complete nucleotide sequence and biological properties of an infectious clone of prototype echovirus 9. , 1995, Virus research.

[156]  D. Lublin,et al.  Characterization of the echovirus 7 receptor: domains of CD55 critical for virus binding , 1995, Journal of virology.

[157]  R. Bates,et al.  Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment , 1995, Journal of virology.

[158]  M. Levin,et al.  Neonatal enterovirus infection: virology, serology, and effects of intravenous immune globulin. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[159]  E. Domingo,et al.  Structure of the major antigenic loop of foot‐and‐mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg‐Gly‐Asp motif in the interaction. , 1995, The EMBO journal.

[160]  P. Mason,et al.  Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells , 1995, Journal of virology.

[161]  M. Loeffelholz,et al.  Diagnosis of neonatal enterovirus infection by polymerase chain reaction. , 1995, The Journal of pediatrics.

[162]  D. Stuart,et al.  Implications for viral uncoating from the structure of bovine enterovirus , 1995, Nature Structural Biology.

[163]  T. Hyypiä,et al.  Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group , 1994, Journal of virology.

[164]  D. Filman,et al.  Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: Structure of the empty capsid assembly intermediate at 2.9 Å resolution , 1994, Protein science : a publication of the Protein Society.

[165]  T. Baker,et al.  Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[166]  P. Auvinen,et al.  A distinct picornavirus group identified by sequence analysis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[167]  E. Moxon,et al.  Chronic enteroviral meningoencephalitis in agammaglobulinemia: Case report and literature review , 1992, Journal of Clinical Immunology.

[168]  J. Bergelson,et al.  Identification of the integrin VLA-2 as a receptor for echovirus 1. , 1992, Science.

[169]  D. Filman,et al.  Three-dimensional structure of Theiler virus. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[170]  T. Hyypiä,et al.  The nucleotide sequences of wild-type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. , 1992, The Journal of general virology.

[171]  T. Hyypiä,et al.  RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases , 1991, Journal of virology.

[172]  K. Mills,et al.  Cellular and humoral immune responses to poliovirus in mice: a role for helper T cells in heterotypic immunity to poliovirus. , 1991, The Journal of general virology.

[173]  J. Figueroa,et al.  An outbreak of acute flaccid paralysis in jamaica associated with echovirus type 22 , 1989, Journal of medical virology.

[174]  F. K. Pedersen,et al.  Coxsackie B3 virus encephalitis in a patient with agammaglobulinaemia , 1989, European Journal of Pediatrics.

[175]  B. McGinn,et al.  The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). , 1989, The Journal of general virology.

[176]  K. McCullough,et al.  Immune protection against foot-and-mouth disease virus studied using virus-neutralizing and non-neutralizing concentrations of monoclonal antibodies. , 1986, Immunology.

[177]  E. Wimmer,et al.  Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization , 1983, Journal of virology.

[178]  B. Mandel,et al.  The interaction of neutralized poliovirus with HeLa cells. II. Elution, penetration, uncoating. , 1967, Virology.

[179]  A. Sabin,et al.  FACTORS DETERMINING PATHOGENICITY OF VARIANTS OF ECHO 9 VIRUS FOR NEWBORN MICE , 1959, The Journal of experimental medicine.

[180]  L. Reed,et al.  A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS , 1938 .

[181]  A. Bakker,et al.  Genetic manipulation of B cells for the isolation of rare therapeutic antibodies from the human repertoire. , 2014, Methods.

[182]  P. Wingfield,et al.  Cryo-EM study of Hepatitis B virus core antigen capsids decorated with antibodies from a human patient. , 2012, Journal of structural biology.

[183]  A. Radbruch,et al.  Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming (vol 16, pg 123, 2010) , 2010 .

[184]  P. Simmonds,et al.  Comprehensive full-length sequence analyses of human parechoviruses: diversity and recombination. , 2010, The Journal of general virology.

[185]  M. Ryan,et al.  Translation and Protein Processing , 2010 .

[186]  T. Hyypiä,et al.  Integrin alphaVbeta6 is a high-affinity receptor for coxsackievirus A9. , 2009, The Journal of general virology.

[187]  N. Faria,et al.  UvA-DARE ( Digital Academic Repository ) Rooting human parechovirus evolution in time , 2009 .

[188]  R. Molenkamp,et al.  Rapid detection of human parechoviruses in clinical samples by real-time PCR. , 2008, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[189]  K. Wolthers,et al.  New Human Parechoviruses: Six and Counting , 2008 .

[190]  Xiaodong Yan,et al.  AUTO3DEM--an automated and high throughput program for image reconstruction of icosahedral particles. , 2007, Journal of structural biology.

[191]  M. Roivainen,et al.  Efficient RGD-independent entry process of coxsackievirus A9 , 2005, Archives of Virology.

[192]  J. Connor,et al.  Characterization of echovirus 22 variants , 2005, Archives of Virology.

[193]  D. Schnurr,et al.  Coxsackievirus B3 persistence and myocarditis in NFR nu/nu and +/nu mice , 2005, Medical Microbiology and Immunology.

[194]  A. Webster,et al.  Pleconaril--an advance in the treatment of enteroviral infection in immuno-compromised patients. , 2005 .

[195]  A. Sabin,et al.  Properties of ECHO types 22, 23 and 24 viruses , 2005, Archiv für die gesamte Virusforschung.

[196]  H. Zimmermann,et al.  Molecular cloning and sequence determination of the complete genome of the virulent echovirus 9 strain Barty , 2004, Virus Genes.

[197]  J. Winkelstein,et al.  Enteroviral infections in primary immunodeficiency (PID): a survey of morbidity and mortality. , 2003, The Journal of infection.

[198]  T. Hyypiä,et al.  Human parechoviruses—biology and clinical significance , 2000, Reviews in medical virology.

[199]  H. Zimmermann,et al.  Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. , 1999, The Journal of general virology.

[200]  S. Emerson,et al.  Polyprotein processing in echovirus 22: a first assessment. , 1995, Biochemical and biophysical research communications.

[201]  T. Hyypiä,et al.  Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. , 1994, Virology.

[202]  D. Stuart,et al.  Methods used in the structure determination of foot-and-mouth disease virus. , 1993, Acta crystallographica. Section A, Foundations of crystallography.

[203]  A. Ehrnst,et al.  Epidemiological features of type 22 echovirus infection. , 1993, Scandinavian journal of infectious diseases.

[204]  R. Paetau,et al.  Severe encephalitis associated with disseminated echovirus 22 infection. , 1989, Scandinavian journal of infectious diseases.

[205]  P. Minor Antigenic structure of poliovirus. , 1986, Microbiological sciences.

[206]  W. Shearer,et al.  Coxsackievirus B3 producing fatal meningoencephalitis in a patient with X-linked agammaglobulinemia. , 1983, American journal of diseases of children.