Regularized adaptive long autoregressive spectral analysis
暂无分享,去创建一个
Jean-François Giovannelli | Jérôme Idier | Daniel Muller | Guy Desodt | D. Muller | J. Giovannelli | J. Idier | G. Desodt
[1] T. Kailath,et al. A state-space approach to adaptive RLS filtering , 1994, IEEE Signal Processing Magazine.
[2] Ken D. Sauer,et al. A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..
[3] Pascal Larzabal,et al. A new parametric approach for wind profiling with Doppler Radar , 1997 .
[4] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[5] Steven Kay. Recursive maximum likelihood estimation of autoregressive processes , 1983 .
[6] G. Kitagawa,et al. A smoothness priors time-varying AR coefficient modeling of nonstationary covariance time series , 1985, IEEE Transactions on Automatic Control.
[7] José M. N. Leitão,et al. Nonparametric estimation of mean Doppler and spectral width , 2000, IEEE Trans. Geosci. Remote. Sens..
[8] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[9] P. Green. Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.
[10] IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .
[11] S.M. Kay,et al. Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.
[12] David Knox Barton,et al. Radar Technology Encyclopedia , 1997 .
[13] L. R. Rabiner,et al. An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.
[14] W. M. Carey,et al. Digital spectral analysis: with applications , 1986 .
[15] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[16] David McLaughlin,et al. Dual-polarized Doppler radar measurements of oceanic fronts , 1999, IEEE Trans. Geosci. Remote. Sens..
[17] Pham Dinh Tuan,et al. Maximum likelihood estimation of the autoregressive model by relaxation on the reflection coefficients , 1988, IEEE Trans. Acoust. Speech Signal Process..
[18] E. Parzen. Some recent advances in time series modeling , 1974 .
[19] J.B. Allen,et al. A unified approach to short-time Fourier analysis and synthesis , 1977, Proceedings of the IEEE.
[20] Jont B. Allen,et al. Short term spectral analysis, synthesis, and modification by discrete Fourier transform , 1977 .
[21] Jérôme Idier,et al. Convex half-quadratic criteria and interacting auxiliary variables for image restoration , 2001, IEEE Trans. Image Process..
[22] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[23] G. Demoment,et al. A Bayesian method for long AR spectral estimation: a comparative study , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[24] D. M. Titterington,et al. A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[25] C. Swanson. On spectral estimation , 1962 .
[26] G. Kitagawa. Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .
[27] T. Ulrych,et al. Time series modeling and maximum entropy , 1976 .
[28] P. Hall,et al. Common Structure of Techniques for Choosing Smoothing Parameters in Regression Problems , 1987 .
[29] W. Gersch,et al. A smoothness priors long AR model method for spectral estimation , 1985, IEEE Transactions on Automatic Control.
[30] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[31] H. Akaike. A new look at the statistical model identification , 1974 .
[32] R. Shumway,et al. AN APPROACH TO TIME SERIES SMOOTHING AND FORECASTING USING THE EM ALGORITHM , 1982 .
[33] D. Titterington. Common structure of smoothing techniques in statistics , 1985 .
[34] Yves Goussard,et al. GCV and ML Methods of Determining Parameters in Image Restoration by Regularization: Fast Computation in the Spatial Domain and Experimental Comparison , 1993, J. Vis. Commun. Image Represent..
[35] H. Akaike. Statistical predictor identification , 1970 .