Multihomogeneous polynomial decomposition using moment matrices

In the paper, we address the important problem of tensor decomposition which can be seen as a generalisation of Singular Value Decomposition for matrices. We consider general multilinear and multihomogeneous tensors. We show how to reduce the problem to a truncated moment matrix problem and we give a new criterion for flat extension of Quasi-Hankel matrices. We connect this criterion to the commutation characterisation of border bases. A new algorithm is described: it applies for general multihomogeneous tensors, extending the approach of J.J. Sylvester on binary forms. An example illustrates the algebraic operations involved in this approach and how the decomposition can be recovered from eigenvector computation.

[1]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[2]  Henk A. L. Kiers,et al.  An efficient algorithm for PARAFAC of three-way data with large numbers of observation units , 1991 .

[3]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[4]  E. Ballico,et al.  Stratification of the fourth secant variety of Veronese varieties via the symmetric rank , 2010, 1005.3465.

[5]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[6]  Ananthram Swami,et al.  Multichannel ARMA processes , 1994, IEEE Trans. Signal Process..

[7]  Jerry M. Mendel,et al.  Applications of cumulants to array processing - I. Aperture extension and array calibration , 1995, IEEE Trans. Signal Process..

[8]  Laurent Albera,et al.  On the virtual array concept for higher order array processing , 2005, IEEE Transactions on Signal Processing.

[9]  Alessandra Bernardi,et al.  Ideals of varieties parameterized by certain symmetric tensors , 2007, 0705.1942.

[10]  Bernard Mourrain,et al.  A New Criterion for Normal Form Algorithms , 1999, AAECC.

[11]  Victor Y. Pan,et al.  Multivariate Polynomials, Duality, and Structured Matrices , 2000, J. Complex..

[12]  M. V. Catalisano,et al.  On the ideals of secant varieties to certain rational varieties , 2006 .

[13]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[14]  Bernard Mourrain,et al.  A generalized flat extension theorem for moment matrices , 2009 .

[15]  Mario Pucci,et al.  The Veronese Variety and Catalecticant Matrices , 1998 .

[16]  Ravi P. Agarwal,et al.  The Canonical Forms , 2009 .

[17]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[18]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[19]  Alessandra Bernardi,et al.  Computing symmetric rank for symmetric tensors , 2009, J. Symb. Comput..

[20]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[21]  J. Landsberg,et al.  Equations for secant varieties to Veronese varieties , 2010, 1006.0180.

[22]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[23]  H A Huy,et al.  Box-shaped Matrices and the Defining Ideal of Certain Blowup Surfaces , 2002 .

[24]  Anne Ferréol,et al.  On the behavior of current second and higher order blind source separation methods for cyclostationary sources , 2000, IEEE Trans. Signal Process..

[25]  Elizabeth S. Allman,et al.  Phylogenetic ideals and varieties for the general Markov model , 2004, Adv. Appl. Math..

[26]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[27]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[28]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[29]  Chris Peterson,et al.  Induction for secant varieties of Segre varieties , 2006, math/0607191.

[30]  Mohamed Elkadi,et al.  Introduction à la résolution des systèmes polynomiaux , 2007 .

[31]  T. Ens,et al.  Blind signal separation : statistical principles , 1998 .

[32]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[33]  Robert Grone,et al.  Decomposable tensors as a quadratic variety , 1977 .

[34]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[35]  Pascal Chevalier,et al.  Optimal separation of independent narrow-band sources: Concept and performance , 1999, Signal Process..

[36]  J. M. Landsberg,et al.  Geometry and the complexity of matrix multiplication , 2007, ArXiv.

[37]  J. M. Landsberg,et al.  Equations for secant varieties via vector bundles , 2010, 1010.1825.

[38]  Bernard Mourrain,et al.  A Sparse Flat Extension Theorem for Moment Matrices , 2008, ArXiv.

[39]  Pierre Comon,et al.  Blind identification of under-determined mixtures based on the characteristic function , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[40]  M. Atkinson,et al.  On the maximal multiplicative complexity of a family of bilinear forms , 1979 .

[41]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[42]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[43]  Lieven De Lathauwer,et al.  Tensor-based techniques for the blind separation of DS-CDMA signals , 2007, Signal Process..

[44]  G. Ottaviani An Invariant Regarding Waring’s Problem for Cubic Polynomials , 2007, Nagoya Mathematical Journal.

[45]  J. M. Landsberg,et al.  Determinantal equations for secant varieties and the Eisenbud–Koh–Stillman conjecture , 2010, J. Lond. Math. Soc..

[46]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[47]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[48]  Gonzalo Comas,et al.  On the Rank of a Binary Form , 2011, Found. Comput. Math..

[49]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[50]  Arogyaswami Paulraj,et al.  An analytical constant modulus algorithm , 1996, IEEE Trans. Signal Process..

[51]  L. Chiantini,et al.  Weakly defective varieties , 2001 .

[52]  J. Landsberg,et al.  On the ideals and singularities of secant varieties of Segre varieties , 2006, math/0601452.

[53]  J. Landsberg,et al.  Generalizations of Strassen's Equations for Secant Varieties of Segre Varieties , 2006, math/0601097.

[54]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.