Power amplifier frequency controller using feedback control techniques for bio-implanted devices

Switch mode power amplifier is used in biomedical devices widely. The power amplifier supplies the required operating power to the implanted devices. Zero voltage switching (ZVS) operation of class-E power amplifier leads to convert DC voltage to AC with high efficiency and workings frequency. Frequency has a great function in powering most of the biomedical implanted devices. Frequency shift caused by inductors and capacitors used in the circuit can cause load variation or changing in mutual displacement or they may lead to instability and data loss of the implanted devices. So switching-mode frequency control is the key problem in the biomedical device powering system. This paper focused on the design of a frequency controlled power amplifier to improve the controller’s efficiency in terms of speed and better results. The objective of this work is to control the operating frequency. Feedback control method is used by using proportional integral derivative controller (PID), proportional integral (PI) and voltage controlled oscillator (VCO) to reduce the phase shift and settling time. The Bode plot and Nyquist stability criterion analyses show that the developed power amplifier frequency controller is stable and perform well to improve the controller efficiency. Streszczenie. W artykule opisano wzmacniacz mocy używany w technice bio-implantów. Wzmacniacz klasy E z operacją ZVS przekształca stałe napięcie na napięcia AC. Kontrola częstotliwości tego napięcia ma ważne znaczenie ponieważ częstotliwość może się zmieniać przy obecności elementów L, C w układzie. W pracy opisano metode kontroli częstotliwości tego napięcia. Kontrola częstotliwości wzmacniacza mocy wykorzystywanego do zasilania bio-implantów

[1]  Nathan O. Sokal,et al.  Class of High-Efficiency Tuned Switching Power Amplifiers , 2009 .

[2]  Ismail Musirin,et al.  Comparative study of Fuzzy Logic controller and Proportional Integral Derivative controller on DC-DC Buck Converter , 2010, 2010 4th International Power Engineering and Optimization Conference (PEOCO).

[3]  Salina Abdul Samad,et al.  Modulation Techniques for Biomedical Implanted Devices and Their Challenges , 2011, Sensors.

[4]  M. A. Hannan,et al.  Transient Analysis of FACTS and Custom Power Devices Using Phasor Dynamics , 2006 .

[5]  Mohammed A. Hannan,et al.  EFFICIENT DATA AND POWER TRANSFER FOR BIO-IMPLANTED DEVICES BASED ON ASK MODULATION TECHNIQUES , 2012 .

[6]  Paolo Mattavelli,et al.  Sliding-Mode Control of Switched-Mode Power Supplies , 2002 .

[7]  Fabrizio Palma,et al.  A Harmonic Class-C CMOS VCO-Based on Low Frequency Feedback Loop: Theoretical Analysis and Experimental Results , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Anestis Dounavis,et al.  Misalignment analysis of resonance-based wireless power transfer to biomedical implants , 2012, 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE).

[9]  X. L. Huang,et al.  The Coil Misalignment Model of Inductively Coupled Wireless Power Transfer System: Mutual Inductance Analysis and Transfer E-ciency Optimization , 2012 .

[10]  Saad Mutashar,et al.  Efficient low-power recovery circuits for bio-implanted micro-sensors , 2013 .

[11]  A. Hussain,et al.  Analysis of transcutaneous inductive powering links , 2012, 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012).

[12]  No Sokal,et al.  CLASS-E - NEW CLASS OF HIGH-EFFICIENCY TUNED SINGLE-ENDED SWITCHING POWER AMPLIFIERS , 1975 .