Human exposure and sensitivity to globally extreme wildfire events

[1]  Cristina Santín,et al.  Global trends in wildfire and its impacts: perceptions versus realities in a changing world , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[2]  A. Westerling Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Michael Brauer,et al.  Critical Review of Health Impacts of Wildfire Smoke Exposure , 2016, Environmental health perspectives.

[4]  Scott J. Goetz,et al.  The Science of Firescapes: Achieving Fire-Resilient Communities , 2016, Bioscience.

[5]  Narasimhan K. Larkin,et al.  Climate change presents increased potential for very large fires in the contiguous United States , 2015 .

[6]  Grant J. Williamson,et al.  Climate-induced variations in global wildfire danger from 1979 to 2013 , 2015, Nature Communications.

[7]  A. Gill,et al.  Learning to coexist with wildfire , 2014, Nature.

[8]  Andrew Kliskey,et al.  Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems , 2014 .

[9]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[10]  Scott L. Stephens,et al.  Temperate and boreal forest mega‐fires: characteristics and challenges , 2014 .

[11]  José Manuel Gutiérrez,et al.  Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios , 2014, Climatic Change.

[12]  Aaron M. Sparks,et al.  Defining extreme wildland fires using geospatial and ancillary metrics , 2013 .

[13]  D. Roy,et al.  Is burn severity related to fire intensity? Observations from landscape scale remote sensing , 2013 .

[14]  J. Pausas,et al.  The global fire–productivity relationship , 2013 .

[15]  Jerry Williams,et al.  Exploring the onset of high-impact mega-fires through a forest land management prism , 2013 .

[16]  S. Henderson,et al.  Satellite-based comparison of fire intensity and smoke plumes from prescribed fires and wildfires in south-eastern Australia , 2013 .

[17]  M. Flannigan,et al.  Global wildland fire season severity in the 21st century , 2013 .

[18]  F. Zwiers,et al.  Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections , 2013 .

[19]  E. Kasischke,et al.  Controls on variations in MODIS fire radiative power in Alaskan boreal forests: Implications for fire severity conditions , 2013 .

[20]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[21]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[22]  D. Roy,et al.  Southern African Fire Regimes as Revealed by Remote Sensing , 2010 .

[23]  J. Régnière,et al.  Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects , 2010 .

[24]  N. McDowell,et al.  A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests , 2010 .

[25]  J. Keeley Fire intensity, fire severity and burn severity: a brief review and suggested usage , 2009 .

[26]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[27]  M. Cochrane Fire science for rainforests , 2003, Nature.

[28]  Judea Pearl,et al.  Direct and Indirect Effects , 2001, UAI.

[29]  Cynthia Rosenzweig,et al.  Potential evapotranspiration and the likelihood of future drought , 1990 .