Neighbor sum distinguishing total choosability of 1-planar graphs with maximum degree at least 24

Abstract For a simple graph G , a neighbor sum distinguishing total k -coloring of G is a mapping ϕ : V ( G ) ∪ E ( G ) → { 1 , 2 , … , k } such that no two adjacent or incident elements in V ( G ) ∪ E ( G ) receive the same color and w ϕ ( u ) ≠ w ϕ ( v ) for each edge u v ∈ E ( G ) , where w ϕ ( v ) (or w ϕ ( u ) ) denotes the sum of the color of v (or u ) and the colors of all edges incident with v (or u ). For each element x ∈ V ( G ) ∪ E ( G ) , let L ( x ) be a list of integer numbers. If, whenever we give a list assignment L = { L ( x ) | | L ( x ) | = k , x ∈ V ( G ) ∪ E ( G ) } , there exists a neighbor sum distinguishing total k -coloring ϕ such that ϕ ( x ) ∈ L ( x ) for each element x ∈ V ( G ) ∪ E ( G ) , then we say that ϕ is a list neighbor sum distinguishing total k -coloring. The smallest k for which such a coloring exists is called the neighbor sum distinguishing total choosability of G , denoted by c h ∑ ′ ′ ( G ) . A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. There is almost no result yet about c h ∑ ′ ′ ( G ) if G is a 1-planar graph. We prove that c h ∑ ′ ′ ( G ) ≤ Δ + 3 for every 1-planar graph G with maximum degree Δ ≥ 24 .

[1]  Xin Zhang,et al.  On edge colorings of 1-planar graphs , 2011, Inf. Process. Lett..

[2]  Ben Seamone,et al.  The 1-2-3 Conjecture and related problems: a survey , 2012, ArXiv.

[3]  Lin Sun,et al.  Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10 , 2017, Appl. Math. Comput..

[4]  Po-Yi Huang,et al.  Weighted-1-antimagic graphs of prime power order , 2012, Discret. Math..

[5]  G. Wang,et al.  Neighbor sum distinguishing total colorings of K4-minor free graphs , 2013 .

[6]  Rong Luo,et al.  Neighbor sum distinguishing total coloring and list neighbor sum distinguishing total coloring , 2017, Discret. Appl. Math..

[7]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[8]  Jakub Przybylo,et al.  Total Weight Choosability of Graphs , 2011, Electron. J. Comb..

[9]  Aijun Dong,et al.  Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree , 2014 .

[10]  Jin-bo Li,et al.  Neighbor sum distinguishing total coloring of sparse IC-planar graphs , 2018, Discret. Appl. Math..

[11]  Xiaowei Yu,et al.  Neighbor sum distinguishing total choosability of planar graphs , 2016, J. Comb. Optim..

[12]  Florian Pfender,et al.  Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.

[13]  Jaroslaw Grytczuk,et al.  Additive Coloring of Planar Graphs , 2014, Graphs Comb..

[14]  LaiHao Ding,et al.  Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz , 2014 .

[15]  Jakub Przybylo,et al.  Irregularity Strength of Regular Graphs , 2008, Electron. J. Comb..

[16]  Jihui Wang,et al.  Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles , 2017, Theor. Comput. Sci..

[17]  Jakub Przybylo,et al.  Neighbor Sum Distinguishing Index , 2013, Graphs Comb..

[18]  A. Thomason,et al.  Edge weights and vertex colours , 2004 .

[19]  Jiguo Yu,et al.  Neighbor Sum (Set) Distinguishing Total Choosability Via the Combinatorial Nullstellensatz , 2017, Graphs Comb..

[20]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[21]  Mariusz Wozniak,et al.  On the Total-Neighbor-Distinguishing Index by Sums , 2015, Graphs Comb..

[22]  Jihui Wang,et al.  Neighbor sum distinguishing total choosability of planar graphs without 4-cycles , 2016, Discret. Appl. Math..

[23]  Xuding Zhu,et al.  Antimagic labelling of vertex weighted graphs , 2012, J. Graph Theory.

[24]  Yan Guiying,et al.  Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz , 2014 .

[25]  Yunfang Tang,et al.  Asymptotically optimal neighbor sum distinguishing total colorings of graphs , 2017, Discret. Math..

[26]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[27]  B. Yao,et al.  On adjacent-vertex-distinguishing total coloring of graphs , 2005 .

[28]  Xuding Zhu,et al.  Total weight choosability of graphs , 2011, J. Graph Theory.