Calibration of higher eigenmode spring constants of atomic force microscope cantilevers

Standard spring constant calibration methods are compared when applied to higher eigenmodes of cantilevers used in dynamic atomic force microscopy (dAFM). Analysis shows that Sader's original method (Sader et al 1999 Rev. Sci. Instrum. 70 3967-9), which relies on a priori knowledge of the eigenmode shape, is poorly suited for the calibration of higher eigenmodes. On the other hand, the thermal noise method (Hutter and Bechhoefer 1993 Rev. Sci. Instrum. 64 1868-73) does not require knowledge of the eigenmode and remains valid for higher eigenmodes of the dAFM probe. Experimental measurements of thermal vibrations in air for three representative cantilevers are provided to support the theoretical results.

[1]  S. Okuma,et al.  A method for determining the spring constant of cantilevers for atomic force microscopy , 1996 .

[2]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[3]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[4]  John E. Sader,et al.  Accurate formulas for interaction force and energy in frequency modulation force spectroscopy , 2004 .

[5]  A. Katan,et al.  Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique , 2009, Nanotechnology.

[6]  Arvind Raman,et al.  Equivalent point-mass models of continuous atomic force microscope probes , 2007 .

[7]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[8]  J. Kokavecz,et al.  Spring constant of microcantilevers in fundamental and higher eigenmodes , 2008 .

[9]  Jason Cleveland,et al.  Finite optical spot size and position corrections in thermal spring constant calibration , 2004 .

[10]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[11]  J. Sader,et al.  Calibration of rectangular atomic force microscope cantilevers , 1999 .

[12]  Todd Sulchek,et al.  Actuation and characterization of atomic force microscope cantilevers in fluids by acoustic radiation pressure , 2001 .

[13]  Jim Woodhouse,et al.  LINEAR DAMPING MODELS FOR STRUCTURAL VIBRATION , 1998 .

[14]  Arvind Raman,et al.  Inverting amplitude and phase to reconstruct tip–sample interaction forces in tapping mode atomic force microscopy , 2008, Nanotechnology.

[15]  Tilman E. Schäffer,et al.  Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants , 2006 .

[16]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[17]  T. Sulzbach,et al.  Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids , 2008, Nanotechnology.

[18]  Tomasz Kowalewski,et al.  Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Holger Schönherr,et al.  Scanning Force Microscopy , 2004 .

[20]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[21]  U. Dürig,et al.  Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy , 1999 .

[22]  P. Zhdan,et al.  Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs. , 2004, Ultramicroscopy.

[23]  R. Dagastine,et al.  Atomic force microscopy: loading position dependence of cantilever spring constants and detector sensitivity. , 2007, The Review of scientific instruments.

[24]  Vladimir V. Tsukruk,et al.  Spring constants of composite ceramic/gold cantilevers for scanning probe microscopy , 1999 .

[25]  N. Amer,et al.  Simultaneous measurement of lateral and normal forces with an optical‐beam‐deflection atomic force microscope , 1990 .

[26]  Sverre Myhra,et al.  Determination of the spring constants of probes for force microscopy/spectroscopy , 1996 .

[27]  H. Butt,et al.  Force measurements with the atomic force microscope: Technique, interpretation and applications , 2005 .

[28]  J. Kramar,et al.  Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard. , 2007, The Review of scientific instruments.

[29]  Hendrik Hölscher,et al.  Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy , 2006 .

[30]  Arvind Raman,et al.  On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids , 2010 .

[31]  Masayuki Abe,et al.  Dynamic force spectroscopy using cantilever higher flexural modes , 2007 .

[32]  L. Hope-weeks,et al.  Nondestructive experimental determination of bimaterial rectangular cantilever spring constants in water. , 2008, The Review of scientific instruments.

[33]  R. Garcia,et al.  Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes , 2006 .

[34]  R. Yoon,et al.  Use of Atomic Force Microscope for the Measurements of Hydrophobic Forces between Silanated Silica Plate and Glass Sphere , 1994 .

[35]  H. Sumali,et al.  DMCMN: Experimental/Analytical Evaluation of the Effect of Tip Mass on Atomic Force Microscope Cantilever Calibration , 2009 .

[36]  Tilman E. Schäffer,et al.  Calculation of thermal noise in an atomic force microscope with a finite optical spot size , 2005 .

[37]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[38]  Manhee Lee,et al.  General theory of amplitude-modulation atomic force microscopy. , 2006, Physical review letters.

[39]  M. Dong,et al.  Determination of protein structural flexibility by microsecond force spectroscopy. , 2009, Nature nanotechnology.

[40]  Benjamin Ohler,et al.  Cantilever spring constant calibration using laser Doppler vibrometry. , 2007, The Review of scientific instruments.

[41]  T. Senden,et al.  A Method for the Calibration of Force Microscopy Cantilevers via Hydrodynamic Drag , 2000 .

[42]  Timothy Senden,et al.  Experimental Determination of Spring Constants in Atomic Force Microscopy , 1994 .

[43]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[44]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[45]  S. Biggs,et al.  Calibration of colloid probe cantilevers using the dynamic viscous response of a confined liquid , 2003 .

[46]  S. Glotzer,et al.  The effect of nanometre-scale structure on interfacial energy. , 2009, Nature materials.

[47]  J. Gilman,et al.  Nanotechnology , 2001 .

[48]  R. Lévy,et al.  Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods , 2002 .

[49]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[50]  Martin Stark,et al.  Inverting dynamic force microscopy: From signals to time-resolved interaction forces , 2002, Proceedings of the National Academy of Sciences of the United States of America.