Interactive retrieval of video using pre-computed shot-shot similarities

A probabilistic framework for content-based interactive video retrieval is described. The developed indexing of video fragments originates from the probability of the user's positive judgment about key-frames of video shots. Initial estimates of the probabilities are obtained from low-level feature representation. Only statistically significant estimates are picked out, the rest are replaced by an appropriate constant allowing efficient access at search time without loss of search quality and leading to improvement in most experiments. With time, these probability estimates are updated from the relevance judgment of users performing searches, resulting in further substantial increases in mean average precision.

[1]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[3]  Vijay V. Raghavan,et al.  Design and evaluation of algorithms for image retrieval by spatial similarity , 1995, TOIS.

[4]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[5]  Djoerd Hiemstra,et al.  Combining Information Sources for Video Retrieval , 2003, TRECVID.

[6]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[7]  S. Robertson The probability ranking principle in IR , 1997 .

[8]  Ellen M. Voorhees,et al.  The Tenth Text REtrieval Conference, TREC 2001 | NIST , 2002 .

[9]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[10]  Djoerd Hiemstra,et al.  A Probabilistic Multimedia Retrieval Model and Its Evaluation , 2003, EURASIP J. Adv. Signal Process..

[11]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[12]  Jean-Luc Gauvain,et al.  The LIMSI Broadcast News transcription system , 2002, Speech Commun..

[13]  Hans-Jörg Schek,et al.  A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces , 1998, VLDB.

[14]  Djoerd Hiemstra,et al.  Interactive Content-Based Retrieval Using Pre-computed Object-Object Similarities , 2004, CIVR.

[15]  Martin L. Kersten,et al.  Efficient k-NN search on vertically decomposed data , 2002, SIGMOD '02.

[16]  Thierry Pun,et al.  Strategies for positive and negative relevance feedback in image retrieval , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[17]  Christos Faloutsos,et al.  Searching Multimedia Databases by Content , 1996, Advances in Database Systems.

[18]  M. E. Maron,et al.  On Relevance, Probabilistic Indexing and Information Retrieval , 1960, JACM.

[19]  Erkki Oja,et al.  Self-Organising Maps as a Relevance Feedback Technique in Content-Based Image Retrieval , 2001, Pattern Analysis & Applications.

[20]  Nuno Vasconcelos,et al.  Bayesian models for visual information retrieval , 2000 .

[21]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[22]  Ingemar J. Cox,et al.  The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments , 2000, IEEE Trans. Image Process..

[23]  Djoerd Hiemstra,et al.  Using language models for information retrieval , 2001 .

[24]  Douglas R. Heisterkamp Building a latent semantic index of an image database from patterns of relevance feedback , 2002, Object recognition supported by user interaction for service robots.

[25]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[26]  Ellen M. Voorhees,et al.  Variations in relevance judgments and the measurement of retrieval effectiveness , 1998, SIGIR '98.

[27]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[28]  David C. Gibbon,et al.  Relevance Feedback using Support Vector Machines , 2001, ICML.

[29]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[30]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[31]  Robert M. Haralick,et al.  Feature normalization and likelihood-based similarity measures for image retrieval , 2001, Pattern Recognit. Lett..

[32]  Simone Santini,et al.  Integrated browsing and querying for image databases , 2000, IEEE MultiMedia.

[33]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[34]  T.S. Huang,et al.  A relevance feedback architecture for content-based multimedia information retrieval systems , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[35]  Chi-Ren Shyu,et al.  Relevance feedback decision trees in content-based image retrieval , 2000, 2000 Proceedings Workshop on Content-based Access of Image and Video Libraries.

[36]  R. Lyman Ott.,et al.  An introduction to statistical methods and data analysis , 1977 .