PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION BY CONSTRAINTS FOR HETEROGENEOUS PROBLEMS

In this work, we present a novel balancing domain decomposition by constraints preconditioner that is robust for multi-material and heterogeneous problems. We start with a well-balanced subdomain partition and, based on an aggregation of elements according to their physical coefficients, we end up with a finer physics-based (PB) subdomain partition. Next, we define geometrical objects (corners, edges, and faces) for this PB partition, and select some of them to enforce subdomain continuity (primal objects). When the physical coefficient in each PB subdomain is constant and the primal objects satisfy a mild condition on the existence of acceptable paths, we can show both theoretically and numerically that the condition number does not depend on the contrast of the coefficient. The constant coefficient condition is computationally feasible for multi-material problems. However, for highly heterogeneous problems, such restriction might result into a large coarse problem. In this case, we propose a relaxed version of the method where we only require that the maximal contrast of the physical coefficient in each PB subdomain is smaller than a predefined threshold. The threshold can be chosen so that the condition number is reasonably small while the size of the coarse problem is not too large. An extensive set of numerical experiments is provided to support our findings. In particular, we show a robustness and a weak scalability analysis up to 8000 cores of the new preconditioner when applied to a 3D heterogeneous problem with more than 260 million degrees of freedom. For the scalability analysis, we have exploited a highly scalable advanced inter-level overlapped implementation of the preconditioner that deals very efficiently with the coarse problem computation.

[1]  J. Mandel Balancing domain decomposition , 1993 .

[2]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[3]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[4]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[5]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[6]  Gregory W. Brown,et al.  Mesh partitioning for implicit computations via iterative domain decomposition: Impact and optimization of the subdomain aspect ratio , 1995 .

[7]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[8]  Charbel Farhat,et al.  A scalable dual-primal domain decomposition method , 2000, Numerical Linear Algebra with Applications.

[9]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[10]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .

[11]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[12]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[13]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[14]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[15]  Olof B. Widlund,et al.  Dual‐primal FETI methods for linear elasticity , 2006 .

[16]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[17]  Juan Galvis,et al.  BDDC methods for discontinuous Galerkin discretization of elliptic problems , 2007, J. Complex..

[18]  Ivan G. Graham,et al.  Domain decomposition for multiscale PDEs , 2007, Numerische Mathematik.

[19]  Clark R. Dohrmann,et al.  An approximate BDDC preconditioner , 2007, Numer. Linear Algebra Appl..

[20]  Eero Vainikko,et al.  Additive Schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients , 2007, Computing.

[21]  Susanne C. Brenner,et al.  BDDC and FETI-DP without matrices or vectors , 2007 .

[22]  Xuemin Tu Three-Level BDDC in Three Dimensions , 2007, SIAM J. Sci. Comput..

[23]  O. Widlund,et al.  On the use of inexact subdomain solvers for BDDC algorithms , 2007 .

[24]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[25]  Olof B. Widlund,et al.  An Analysis of a FETI-DP Algorithm on Irregular Subdomains in the Plane , 2008, SIAM J. Numer. Anal..

[26]  Clark R. Dohrmann,et al.  Multispace and multilevel BDDC , 2007, Computing.

[27]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs , 2008, Numerische Mathematik.

[28]  Yunrong Zhu,et al.  Domain decomposition preconditioners for elliptic equations with jump coefficients , 2008, Numer. Linear Algebra Appl..

[29]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[30]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[31]  Robert Scheichl,et al.  A robust two-level domain decomposition preconditioner for systems of PDEs , 2011 .

[32]  Hua Xiang,et al.  A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..

[33]  Robert Scheichl,et al.  Analysis of FETI methods for multiscale PDEs. Part II: interface variation , 2011, Numerische Mathematik.

[34]  Frédéric Nataf,et al.  Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps , 2012, Comput. Methods Appl. Math..

[35]  Pavel Burda,et al.  Face-based selection of corners in 3D substructuring , 2009, Math. Comput. Simul..

[36]  Santiago Badia,et al.  Implementation and Scalability Analysis of Balancing Domain Decomposition Methods , 2013 .

[37]  Santiago Badia,et al.  Enhanced balancing Neumann–Neumann preconditioning in computational fluid and solid mechanics , 2013 .

[38]  Frédéric Nataf,et al.  Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method , 2013 .

[39]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[40]  Santiago Badia,et al.  A Highly Scalable Parallel Implementation of Balancing Domain Decomposition by Constraints , 2014, SIAM J. Sci. Comput..

[41]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[42]  Santiago Badia,et al.  On the scalability of inexact balancing domain decomposition by constraints with overlapped coarse/fine corrections , 2015, Parallel Comput..

[43]  Eric T. Chung,et al.  A BDDC Algorithm with Enriched Coarse Spaces for Two-Dimensional Elliptic Problems with Oscillatory and High Contrast Coefficients , 2015, Multiscale Model. Simul..

[44]  Sébastien Loisel,et al.  Optimized Schwarz and 2-Lagrange Multiplier Methods for Multiscale Elliptic PDEs , 2015, SIAM J. Sci. Comput..

[45]  Axel Klawonn,et al.  FETI-DP Methods with an Adaptive Coarse Space , 2015, SIAM J. Numer. Anal..

[46]  M. Gander,et al.  Analysis of a New Harmonically Enriched Multiscale Coarse Space for Domain Decomposition Methods , 2015, 1512.05285.

[47]  Jong Ho Lee,et al.  A Balancing Domain Decomposition by Constraints Deluxe Method for Reissner-Mindlin Plates with Falk-Tu Elements , 2015, SIAM J. Numer. Anal..

[48]  Olof B. Widlund,et al.  BDDC Deluxe Domain Decomposition , 2016 .

[49]  Olof B. Widlund,et al.  A BDDC Algorithm with Deluxe Scaling for Three‐Dimensional H(curl) Problems , 2016 .

[50]  Santiago Badia,et al.  Multilevel Balancing Domain Decomposition at Extreme Scales , 2016, SIAM J. Sci. Comput..

[51]  Axel Klawonn,et al.  Adaptive Coarse Spaces for BDDC with a Transformation of Basis , 2016 .

[52]  Santiago Badia,et al.  Relaxing the Roles of Corners in BDDC by Perturbed Formulation , 2017 .