Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting

[1]  R. Delgado,et al.  Cross neutralization of SARS‐CoV‐2 omicron subvariants after repeated doses of COVID‐19 mRNA vaccines , 2022, Journal of medical virology.

[2]  R. J. Edwards,et al.  A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice , 2021, Science Translational Medicine.

[3]  T. Kurosaki,et al.  Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses , 2021, The Journal of experimental medicine.

[4]  D. Shay,et al.  Safety Monitoring of an Additional Dose of COVID-19 Vaccine — United States, August 12–September 19, 2021 , 2021, MMWR. Morbidity and mortality weekly report.

[5]  R. Link-Gelles,et al.  Effectiveness of Pfizer-BioNTech and Moderna Vaccines in Preventing SARS-CoV-2 Infection Among Nursing Home Residents Before and During Widespread Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant — National Healthcare Safety Network, March 1–August 1, 2021 , 2021, MMWR. Morbidity and mortality weekly report.

[6]  David R. Holtgrave,et al.  New COVID-19 Cases and Hospitalizations Among Adults, by Vaccination Status — New York, May 3–July 25, 2021 , 2021, MMWR. Morbidity and mortality weekly report.

[7]  I. Diamond,et al.  Impact of Delta on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK , 2021, medRxiv.

[8]  Catherine M. Brown,et al.  Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings — Barnstable County, Massachusetts, July 2021 , 2021, MMWR. Morbidity and mortality weekly report.

[9]  P. Dormitzer,et al.  Six Month Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine , 2021, medRxiv.

[10]  D. Neuberg,et al.  Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike , 2021, Cell.

[11]  Thomas P. Fabrizio,et al.  Infection and Vaccine-Induced Neutralizing-Antibody Responses to the SARS-CoV-2 B.1.617 Variants , 2021, The New England journal of medicine.

[12]  Antonia Sophia Peter,et al.  Author response for "A pair of non‐competing neutralizing human monoclonal antibodies protecting from disease in a SARS‐CoV‐2 infection model" , 2021 .

[13]  Yana Safonova,et al.  Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques , 2021, bioRxiv.

[14]  S. Matsushita,et al.  Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19 , 2021, Cell Reports.

[15]  J. Bloom,et al.  Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection , 2021, Science Translational Medicine.

[16]  M. Halloran,et al.  Efficacy Estimates for Various COVID-19 Vaccines: What we Know from the Literature and Reports , 2021, medRxiv.

[17]  E. Boritz,et al.  Infection and vaccine-induced neutralizing antibody responses to the SARS-CoV-2 B.1.617.1 variant , 2021, bioRxiv.

[18]  Rachel L. Spreng,et al.  Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses , 2021, Nature.

[19]  Yan Liang,et al.  Self-Assembling Nanoparticle Vaccines Displaying the Receptor Binding Domain of SARS-CoV-2 Elicit Robust Protective Immune Responses in Rhesus Monkeys , 2021, Bioconjugate chemistry.

[20]  L. Abu-Raddad,et al.  Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants , 2021, The New England journal of medicine.

[21]  Samuel J. Hinshaw,et al.  The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates , 2021, Science Translational Medicine.

[22]  N. Sullivan,et al.  Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine , 2021, The New England journal of medicine.

[23]  B. Pulendran,et al.  Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines , 2021, bioRxiv.

[24]  M. Diamond,et al.  Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein , 2021, Cell.

[25]  D. Weissman,et al.  Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice , 2021, Science.

[26]  A. Iafrate,et al.  Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity , 2021, Cell.

[27]  William T. Harvey,et al.  Author Correction: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies , 2021, Nature.

[28]  D. Neuberg,et al.  Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike , 2021, bioRxiv.

[29]  D. Stuart,et al.  Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera , 2021, Cell.

[30]  A. Iafrate,et al.  Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity , 2021, Cell.

[31]  D. Stuart,et al.  Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera , 2021, Cell.

[32]  D. Burton,et al.  Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants , 2021, Science.

[33]  H. Mouquet,et al.  Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies , 2021, Nature Medicine.

[34]  Baoying Huang,et al.  Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice , 2021, Cellular & molecular immunology.

[35]  Lisa E. Gralinski,et al.  Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody , 2021, Science.

[36]  M. Nussenzweig,et al.  mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants , 2021, bioRxiv.

[37]  L. Morris,et al.  SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma , 2021, bioRxiv.

[38]  N. Zhong,et al.  Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates , 2021, ACS nano.

[39]  M. Nussenzweig,et al.  Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice , 2020, Science.

[40]  A. Iafrate,et al.  COVID-19-neutralizing antibodies predict disease severity and survival , 2020, Cell.

[41]  Baoying Huang,et al.  Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice , 2020, Cellular & Molecular Immunology.

[42]  D. Burton,et al.  A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody , 2020, PLoS pathogens.

[43]  D. Qu,et al.  RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response , 2020, Signal Transduction and Targeted Therapy.

[44]  Xin He,et al.  Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses , 2020, Immunity.

[45]  Lisa E. Gralinski,et al.  Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 , 2020, Cell.

[46]  J. Ortega,et al.  SARS‐CoV‐2 RBD Neutralizing Antibody Induction is Enhanced by Particulate Vaccination , 2020, Advanced materials.

[47]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[48]  I. Wilson,et al.  A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody , 2020, bioRxiv.

[49]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[50]  Shamus P. Keeler,et al.  Publisher Correction: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function , 2020, Nature Immunology.

[51]  Kelsey K. Finn,et al.  Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19 , 2020, Cell.

[52]  Lisa E. Gralinski,et al.  Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 , 2020, Cell.

[53]  I. Wilson,et al.  Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity , 2020, bioRxiv.

[54]  Yuquan Wei,et al.  A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity , 2020, Nature.

[55]  Ilya J. Finkelstein,et al.  Structure-based design of prefusion-stabilized SARS-CoV-2 spikes , 2020, Science.

[56]  S. Perlman,et al.  Lessons for COVID-19 Immunity from Other Coronavirus Infections , 2020, Immunity.

[57]  G. Gao,et al.  A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS , 2020, Cell.

[58]  Qiang Zhou,et al.  A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 , 2020, Science.

[59]  J. Dye,et al.  Broad neutralization of SARS-related viruses by human monoclonal antibodies , 2020, Science.

[60]  R. Welsh,et al.  Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail , 2020, Science.

[61]  Larissa B. Thackray,et al.  A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies , 2020, Cell.

[62]  Ilya J. Finkelstein,et al.  Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes , 2020, bioRxiv.

[63]  Linqi Zhang,et al.  Human neutralizing antibodies elicited by SARS-CoV-2 infection , 2020, Nature.

[64]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[65]  F. Gao,et al.  A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2 , 2020, Science.

[66]  J. Bloom,et al.  Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays , 2020, bioRxiv.

[67]  F. Krammer,et al.  SARS-CoV-2 Vaccines: Status Report , 2020, Immunity.

[68]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[69]  K. Shi,et al.  Structural basis of receptor recognition by SARS-CoV-2 , 2020, Nature.

[70]  Nicholas C. Wu,et al.  A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV , 2020, Science.

[71]  Andrea Marzi,et al.  Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses , 2020, Nature Microbiology.

[72]  B. Graham,et al.  Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation , 2020, bioRxiv.

[73]  A. Drelich,et al.  SARS-CoV-2 Infection in Human ACE2 Transgenic Mice , 2020, Bulletin of the Chinese Academy of Sciences.

[74]  M. Tian,et al.  Structure-guided molecular grafting of a complex broadly neutralizing viral epitope , 2019, bioRxiv.

[75]  S. Kazer,et al.  Germline-Encoded Affinity for Cognate Antigen Enables Vaccine Amplification of a Human Broadly Neutralizing Response against Influenza Virus. , 2019, Immunity.

[76]  G. Kelsoe,et al.  Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope. , 2019, Cell host & microbe.

[77]  Ian A Wilson,et al.  Structure and Immune Recognition of the HIV Glycan Shield. , 2018, Annual review of biophysics.

[78]  Lisa E. Gralinski,et al.  SARS-like WIV1-CoV poised for human emergence , 2016, Proceedings of the National Academy of Sciences.

[79]  J. Mascola,et al.  In vitro reconstitution of B cell receptor–antigen interactions to evaluate potential vaccine candidates , 2016, Nature Protocols.

[80]  T. Kepler,et al.  Immunogenic Stimulus for Germline Precursors of Antibodies that Engage the Influenza Hemagglutinin Receptor-Binding Site. , 2015, Cell reports.

[81]  Lisa E. Gralinski,et al.  A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence , 2015, Nature Medicine.

[82]  T. Kepler,et al.  Viral Receptor-Binding Site Antibodies with Diverse Germline Origins , 2015, Cell.

[83]  A. Monto,et al.  The Tecumseh Study of Respiratory Illness , 2015 .

[84]  J. Hendley,et al.  Coronavirus Infections in Working Adults , 2015 .

[85]  R. Sanders,et al.  Immunosilencing a Highly Immunogenic Protein Trimerization Domain* , 2015, The Journal of Biological Chemistry.

[86]  Z. Memish,et al.  Transmission of MERS-coronavirus in household contacts. , 2014, The New England journal of medicine.

[87]  Thomas B. Kepler,et al.  Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation , 2014, Front. Immunol..

[88]  David Baker,et al.  Proof of principle for epitope-focused vaccine design , 2014, Nature.

[89]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[90]  E. Smit,et al.  Affordable Luciferase Reporter Assay for Cell-Based High-Throughput Screening , 2013, Journal of biomolecular screening.

[91]  Christian Drosten,et al.  Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC , 2013, Nature.

[92]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[93]  B. Zakeri,et al.  Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin , 2012, Proceedings of the National Academy of Sciences.

[94]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[95]  D. Baker,et al.  Elicitation of structure-specific antibodies by epitope scaffolds , 2010, Proceedings of the National Academy of Sciences.

[96]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[97]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[98]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[99]  T. Tiller,et al.  Cloning and expression of murine Ig genes from single B cells. , 2009, Journal of immunological methods.

[100]  P. Ganju,et al.  Systematic design and testing of nested (RT-)PCR primers for specific amplification of mouse rearranged/expressed immunoglobulin variable region genes from small number of B cells. , 2008, Journal of immunological methods.

[101]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[102]  Marta Gonzalez Arguedas,et al.  Coronavirus Infections , 2007, Equine Infectious Diseases.

[103]  Lin‐Fa Wang,et al.  Duration of Antibody Responses after Severe Acute Respiratory Syndrome , 2007, Emerging infectious diseases.

[104]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[105]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[106]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[107]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[108]  Jens H. Kuhn,et al.  Retroviruses Pseudotyped with the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Efficiently Infect Cells Expressing Angiotensin-Converting Enzyme 2 , 2004, Journal of Virology.

[109]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[110]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[111]  D. Tyrrell,et al.  The time course of the immune response to experimental coronavirus infection of man , 1990, Epidemiology and Infection.

[112]  J. Fox,et al.  RISES IN TITERS OF ANTIBODY TO HUMAN CORONA VIRUSES OC43 AND 229E IN SEATTLE FAMILIES DURING 1975–1979 , 1986, American journal of epidemiology.

[113]  A. Monto,et al.  The Tecumseh Study of Respiratory Illness. VI. Frequency of and Relationship between Outbreaks of Coronavims Infection , 1974, The Journal of infectious diseases.

[114]  J. Hendley,et al.  Coronavirus infections in working adults. Eight-year study with 229 E and OC 43. , 1972, The American review of respiratory disease.

[115]  R. Webster,et al.  Disquisitions of Original Antigenic Sin. I. Evidence in man. , 1966, The Journal of experimental medicine.

[116]  R. Webster,et al.  DISQUISITIONS ON ORIGINAL ANTIGENIC SIN , 1966, The Journal of experimental medicine.

[117]  R. Webster Original antigenic sin in ferrets: the response to sequential infections with influenza viruses. , 1966, Journal of immunology.

[118]  T. Francis,et al.  CHARACTERIZATION OF INFLUENZA ANTIBODIES BY SERUM ABSORPTION , 1956, The Journal of experimental medicine.