Physics-Based Detection of Subpixel Targets in Hyperspectral Imagery
暂无分享,去创建一个
[1] Marco Gianinetto,et al. The development of Superspectral approaches for the improvement of land cover classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[2] B. Hapke. Theory of reflectance and emittance spectroscopy , 1993 .
[3] F. Kruse. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .
[4] Wallace M. Porter,et al. The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .
[5] Russell M. Mersereau,et al. On the impact of covariance contamination for adaptive detection in hyperspectral imaging , 2005, IEEE Signal Processing Letters.
[6] J. Boardman,et al. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .
[7] Antonio J. Plaza,et al. Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..
[8] David Gillis,et al. New improvements in the ORASIS algorithm , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).
[9] Dimitris Manolakis,et al. Realistic matched filter performance prediction for hyperspectral target detection , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.
[10] E. J. Kelly. An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.
[11] E. Gumbel,et al. Statistics of extremes , 1960 .
[12] Chein-I Chang,et al. Automatic spectral target recognition in hyperspectral imagery , 2003 .
[13] S. Roberts. Novelty detection using extreme value statistics , 1999 .
[14] Alan P. Schaum,et al. Application of stochastic mixing models to hyperspectral detection problems , 1997, Defense, Security, and Sensing.
[15] M. Fréchet. Sur la loi de probabilité de l'écart maximum , 1928 .
[16] Yoram J. Kaufman,et al. Solution of the equation of radiative transfer for remote sensing over nonuniform surface reflectivity , 1982 .
[17] Chein-I Chang,et al. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..
[18] John Fisher,et al. Hyperspectral analysis and target detection system for the Adaptive Spectral Reconnaissance Program (ASRP) , 1998, Defense, Security, and Sensing.
[19] Gregory Asner,et al. Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis , 2000, IEEE Trans. Geosci. Remote. Sens..
[20] Louis L. Scharf,et al. Adaptive subspace detectors , 2001, IEEE Trans. Signal Process..
[21] Laurence B. Milstein,et al. Robust detection using extreme-value theory , 1969, IEEE Trans. Inf. Theory.
[22] Megan M. Lewis,et al. Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..
[23] Robert P. W. Duin,et al. Support vector domain description , 1999, Pattern Recognit. Lett..
[24] D. Landgrebe. Multispectral land sensing: where from, where to? , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.
[25] Rama Chellappa,et al. Kernel fully constrained least squares abundance estimates , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.
[26] J.S. Sadowsky,et al. On large deviations theory and asymptotically efficient Monte Carlo estimation , 1990, IEEE Trans. Inf. Theory.
[27] James A. Bucklew. The Blind Simulation Problem and Regenerative Processes , 1998, IEEE Trans. Inf. Theory.
[28] A. Goetz,et al. Column atmospheric water vapor and vegetation liquid water retrievals from Airborne Imaging Spectrometer data , 1990 .
[29] Rodolphe Marion,et al. Measuring trace gases in plumes from hyperspectral remotely sensed data , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[30] Antonio J. Plaza,et al. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[31] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[32] Erzsébet Merényi,et al. Retrieval of apparent surface reflectance from AVIRIS data: A comparison of empirical line, radiative transfer, and spectral mixture methods , 1994 .
[33] K R Piech. INTERPRETATION OF SOILS , 1974 .
[34] D. Cox,et al. Analysis of Survival Data. , 1985 .
[35] Louis L. Scharf,et al. The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic , 2005, IEEE Transactions on Signal Processing.
[36] A. Huete. A soil-adjusted vegetation index (SAVI) , 1988 .
[37] E. Ford,et al. Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. , 2005, Astrobiology.
[38] E. M. Winter,et al. Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..
[39] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[40] Ramazan Gençay,et al. EVIM: A Software Package for Extreme Value Analysis in MATLAB , 2001 .
[41] Rama Chellappa,et al. Average relative radiance transform for subpixel detection , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..
[42] Rama Chellappa,et al. A hybrid algorithm for subpixel detection in hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.
[43] Glenn Healey,et al. Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..
[44] S. J. Sutley,et al. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada , 1992 .
[45] E. Ashton,et al. Algorithms for the Detection of Su b-Pixel Targets in Multispectral Imagery , 1998 .
[46] Chein-I Chang,et al. Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[47] James A. Gardner,et al. Algorithm for de-shadowing spectral imagery , 2002, SPIE Optics + Photonics.
[48] Heesung Kwon,et al. Kernel matched subspace detectors for hyperspectral target detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[49] R. Kashyap. A Bayesian comparison of different classes of dynamic models using empirical data , 1977 .
[50] John William Strutt,et al. XV. On the light from the sky, its polarization and colour , 1871 .
[51] D. Siegmund. Importance Sampling in the Monte Carlo Study of Sequential Tests , 1976 .
[52] P. Switzer,et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .
[53] Gary A. Shaw,et al. Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..
[54] Edmund R. Malinowski,et al. Theory of error in factor analysis , 1977 .
[55] D. Cox,et al. Analysis of Survival Data. , 1986 .
[56] R. Fisher,et al. Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[57] R. Kashyap. Inconsistency of the AIC rule for estimating the order of autoregressive models , 1980 .
[58] Geoffrey G. Hazel. Object-level change detection in spectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..
[59] Chein-I Chang,et al. Constrained subpixel target detection for remotely sensed imagery , 2000, IEEE Trans. Geosci. Remote. Sens..
[60] D. Roberts,et al. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data , 1993 .
[61] R. Srinivasan,et al. Simulation of CFAR detection algorithms for arbitrary clutter distributions , 2000 .
[62] Robert A. Schowengerdt,et al. Remote sensing, models, and methods for image processing , 1997 .
[63] John R. Schott,et al. Remote Sensing: The Image Chain Approach , 1996 .
[64] George Casella,et al. Statistical Inference Second Edition , 2007 .
[65] A. Atiya,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.
[66] Bea Thai,et al. Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..
[67] Xiaoli Yu,et al. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..
[68] S. Tompkins,et al. Optimization of endmembers for spectral mixture analysis , 1997 .
[69] Amit Banerjee,et al. A machine learning approach for finding hyperspectral endmembers , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.
[70] S. Johnson,et al. The constrained signal detector , 2002, IEEE Trans. Geosci. Remote. Sens..
[71] J. Rissanen. A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .
[72] Raymond F. Kokaly,et al. Surface Reflectance Calibration of Terrestrial Imaging Spectroscopy Data : a Tutorial Using AVIRIS , 2002 .
[73] J. Settle,et al. Linear mixing and the estimation of ground cover proportions , 1993 .
[74] Maurizio Longo,et al. Comparative performance analysis of some extrapolative estimators of probability tails , 1988, IEEE J. Sel. Areas Commun..
[75] A. Berk,et al. FLAASH and MODTRAN4: state-of-the-art atmospheric correction for hyperspectral data , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).
[76] Victoria J. Hodge,et al. A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.
[77] Nahum Gat,et al. Subpixel object detection using hyperspectral imaging for search and rescue operations , 1998, Defense, Security, and Sensing.
[78] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[79] Jeffrey C. Lagarias,et al. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..
[80] Qian Du,et al. Constrained weighted least squares approaches for target detection and classification in hyperspectral imagery , 2002, IEEE International Geoscience and Remote Sensing Symposium.
[81] Rama Chellappa,et al. Hybrid Detectors for Subpixel Targets , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[82] Louis L. Scharf,et al. The CFAR adaptive subspace detector is a scale-invariant GLRT , 1999, IEEE Trans. Signal Process..
[84] J. A. Schell,et al. Monitoring vegetation systems in the great plains with ERTS , 1973 .
[85] Mario Winter,et al. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.
[86] John R. Schott,et al. Use of physics based models in hyperspectral image exploitation , 2002, Applied Imagery Pattern Recognition Workshop, 2002. Proceedings..
[87] John F. Mustard,et al. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra , 1989 .
[88] Thomas Kailath,et al. Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..
[89] Richard L. Smith. Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .
[90] Dimitris G. Manolakis,et al. Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..
[91] G. Foody,et al. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions , 1994 .
[92] Chein-I Chang,et al. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..
[94] John F. Mustard,et al. Spectral unmixing , 2002, IEEE Signal Process. Mag..
[95] Stephen B. Weinstein,et al. Theory and application of some classical and generalized asymptotic distributions of extreme values , 1973, IEEE Trans. Inf. Theory.
[96] Joseph W. Boardman,et al. Inversion of high spectral resolution data , 1990, Other Conferences.
[97] D. Landgrebe. The Evolution of Landsat Data Analysis , 1997 .
[98] Heesung Kwon,et al. Kernel adaptive subspace detector for hyperspectral imagery , 2006, IEEE Geoscience and Remote Sensing Letters.
[99] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[100] L. Haan,et al. Residual Life Time at Great Age , 1974 .
[101] Sidney I. Resnick,et al. Tail estimates motivated by extreme-value theory , 1985 .
[102] Rama Chellappa,et al. An Adaptive Threshold Method for Hyperspectral Target Detection , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.