Visual-Inertial Odometry Tightly Coupled with Wheel Encoder Adopting Robust Initialization and Online Extrinsic Calibration

Combining camera, IMU and wheel encoder is a wise choice for car positioning because of the low cost and complementarity of the sensors. We propose a novel extended visual-inertial odometry algorithm tightly fusing data from the above three sensors. Firstly we propose an IMU-odometer pre-integration approach utilizing complete IMU measurements and wheel encoder readings, to make scale estimation more accurate in subsequent 4-degrees of freedom (DoF) optimization. Secondly we develop an original initialization module where encoder readings are fully utilized to refine gravity direction and provide an initial value for camera pose in real scale. Thirdly, we design a computationally efficient online extrinsic calibration method by fixing the linearization point for the rotational component of IMU-odometer extrinsic parameters, which is deployed depending on the convergence of accelerometer bias. Experimental results prove the robustness of our initialization module and the accuracy of the whole trajectory, as well as the improvement brought about by online extrinsic calibration. Our program can also run on an Nvidia Jetson TX2 module in real time.

[1]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[2]  Shaojie Shen,et al.  Monocular Visual–Inertial State Estimation With Online Initialization and Camera–IMU Extrinsic Calibration , 2017, IEEE Transactions on Automation Science and Engineering.

[3]  Wei Wang,et al.  DRE-SLAM: Dynamic RGB-D Encoder SLAM for a Differential-Drive Robot , 2019, Remote. Sens..

[4]  Dimitrios G. Kottas,et al.  Consistency Analysis and Improvement of Vision-aided Inertial Navigation , 2014, IEEE Transactions on Robotics.

[5]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[6]  Ales Janota,et al.  Precise localization of the mobile wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors , 2019, Robotics Auton. Syst..

[7]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Shi-Sheng Huang,et al.  Tightly-Coupled Monocular Visual-Odometric SLAM Using Wheels and a MEMS Gyroscope , 2018, IEEE Access.

[9]  Joan Solà,et al.  Quaternion kinematics for the error-state Kalman filter , 2015, ArXiv.

[10]  Agostino Martinelli,et al.  Vision and IMU Data Fusion: Closed-Form Solutions for Attitude, Speed, Absolute Scale, and Bias Determination , 2012, IEEE Transactions on Robotics.

[11]  Rong Xiong,et al.  Gyro-aided camera-odometer online calibration and localization , 2017, 2017 American Control Conference (ACC).

[12]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[13]  Wei Liu,et al.  Modeling Varying Camera-IMU Time Offset in Optimization-Based Visual-Inertial Odometry , 2018, ECCV.

[14]  Jörg Stückler,et al.  Keyframe-based visual-inertial online SLAM with relocalization , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[15]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[17]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[18]  Hailin Huang,et al.  Online Extrinsic Parameter Calibration for Robotic Camera–Encoder System , 2019, IEEE Transactions on Industrial Informatics.

[19]  Jianliang Tang,et al.  Complete Solution Classification for the Perspective-Three-Point Problem , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[21]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[23]  Vijay Kumar,et al.  Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[24]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[25]  Yue Guo,et al.  Camera-odometer calibration and fusion using graph based optimization , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).