Hybrid rotary-translational vibration energy harvester using cycloidal motion as a mechanical amplifier

This paper reports on a hybrid rotary-translational vibration energy harvesting approach that exploits cycloidal motion to achieve a relatively high power density from an oscillatory kinetic energy harvester operating at frequencies below 10 Hz. The approach uses a rolling magnetic sphere. The rolling motion mechanically amplifies the velocity at which the magnetic pole of the sphere passes a nearby coil transducer, inducing a proportionally larger electro-motive force across the coil. A prototype cycloidal energy harvester is shown to produce a peak power of 201 mW from a host vibration of 500 mg rms at 5.4 Hz.

[1]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[2]  Rajeevan Amirtharajah,et al.  Self-powered signal processing using vibration-based power generation , 1998, IEEE J. Solid State Circuits.

[3]  David P. Arnold,et al.  Spherical, rolling magnet generators for passive energy harvesting from human motion , 2009 .

[4]  G. Carman,et al.  A low profile vibro-impacting energy harvester with symmetrical stops , 2010 .

[5]  L A Vandewater,et al.  Probability-of-existence of vibro-impact regimes in a nonlinear vibration energy harvester , 2013 .

[6]  Scott D. Moss,et al.  Energy harvesting from heavy haul railcar vibrations , 2013, 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[7]  Jens Twiefel,et al.  Survey on broadband techniques for vibration energy harvesting , 2013 .

[8]  Michael W. Shafer,et al.  Harvestable vibrational energy from an avian source: theoretical predictions vs. measured values , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Ulrike Wallrabe,et al.  Review on Electrodynamic Energy Harvesters - A Classification Approach , 2013, Micromachines.

[10]  Nian X. Sun,et al.  Nonlinear Vibration Energy Harvesting with High-Permeability Magnetic Materials , 2013 .

[11]  Peng Zeng,et al.  Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art , 2010, IEEE Transactions on Industrial Electronics.

[12]  Scott D. Moss,et al.  Development of structural health monitoring systems for composite bonded repairs on aircraft structures , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  Ken Sasaki,et al.  Vibration-based automatic power-generation system , 2005 .

[14]  D.P. Arnold,et al.  Review of Microscale Magnetic Power Generation , 2007, IEEE Transactions on Magnetics.

[15]  Tianwei Ma,et al.  Enhancing mechanical energy harvesting with dynamics escaped from potential well , 2012 .

[16]  Ian Powlesland,et al.  A bi-axial magnetoelectric vibration energy harvester , 2012 .

[17]  Guomin Yang,et al.  High power density vibration energy harvester with high permeability magnetic material , 2011 .

[18]  D. G. Flom,et al.  Theory of Rolling Friction for Spheres , 1959 .

[19]  Kenichi Soga,et al.  A parametrically excited vibration energy harvester , 2014 .

[20]  Steve Beeby,et al.  Energy Harvesting Systems , 2011 .

[21]  Daniel J. Inman,et al.  Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters , 2012 .

[22]  Y. J. Wang,et al.  A Hula-Hoop Energy-Harvesting System , 2011, IEEE Transactions on Magnetics.

[23]  S. P. Beeby,et al.  Experimental comparison of macro and micro scale electromagnetic vibration powered generators , 2007 .

[24]  Daniel J. Inman,et al.  Energy Harvesting Technologies , 2008 .

[25]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[26]  In-Ho Kim,et al.  A tunable rotational energy harvester for low frequency vibration , 2011 .