The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states
暂无分享,去创建一个
[1] Anatolij Dvurecenskij. On States on MV-algebras and their Applications , 2011, J. Log. Comput..
[2] Zdenka Riecanová. Pseudocomplemented lattice effect algebras and existence of states , 2009, Inf. Sci..
[3] Z. Riecanová,et al. Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .
[4] R. J. Greechie,et al. The center of an effect algebra , 1995 .
[5] Vladimír Olejcek. An atomic MV-effect algebra with non-atomic center , 2007, Kybernetika.
[6] Frantisek Kopka. Compatibility in D-posets , 1995 .
[7] Zdenka Riečanová,et al. Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .
[8] Stanley Gudder,et al. S-Dominating Effect Algebras , 1998 .
[9] Tomás Kroupa,et al. Every state on semisimple MV-algebra is integral , 2006, Fuzzy Sets Syst..
[10] Zdenka Riečanová. Subdirect Decompositions of Lattice Effect Algebras , 2003 .
[11] Zdenka Riečanová. Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .
[12] Paolo Vitolo. Compatibility and central elements in pseudo-effect algebras , 2010, Kybernetika.
[13] Franco Montagna,et al. An Algebraic Approach to States on MV-algebras , 2007, EUSFLAT Conf..
[14] Zdenka Riečanová. Proper Effect Algebras Admitting No States , 2001 .
[15] Anatolij Dvurecenskij,et al. State morphism MV-algebras , 2011, Int. J. Approx. Reason..
[16] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[17] Zdenka Riecanová. Continuous lattice effect algebras admitting order-continuous states , 2003, Fuzzy Sets Syst..
[18] Zdenka Riecanová. Archimedean atomic lattice effect algebras in which all sharp elements are central , 2006, Kybernetika.
[19] Zdenka Riecanová. States, Uniformities and Metrics on Lattice Effect Algebras , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[20] Jan Paseka,et al. State smearing theorems and the existence of states on some atomic lattice effect algebras , 2011, J. Log. Comput..
[21] Jan Paseka,et al. Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras , 2010 .
[22] Zdenka Riečanová. ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .
[23] A. Nola,et al. On some classes of state-morphism MV-algebras , 2009 .
[24] Anatolij Dvurecenskij,et al. Erratum to "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173] , 2010, Ann. Pure Appl. Log..
[25] Jan Kühr,et al. De Finetti theorem and Borel states in [0, 1]-valued algebraic logic , 2007, Int. J. Approx. Reason..
[26] Zdenka Riecanová. Basic decomposition of elements and Jauch-Piron effect algebras , 2005, Fuzzy Sets Syst..
[27] Franco Montagna,et al. MV-algebras with internal states and probabilistic fuzzy logics , 2009, Int. J. Approx. Reason..
[28] Richard J. Greechie,et al. Orthomodular Lattices Admitting No States , 1971 .
[29] Zdenka Riečanová,et al. States on sharply dominating effect algebras , 2008 .
[30] Sylvia Pulmannová,et al. Orthocomplete effect algebras , 2003 .
[31] Jan Paseka,et al. Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras , 2010, Kybernetika.