The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states

We study remarkable sub-lattice effect algebras of Archimedean atomic lattice effect algebras E, namely their blocks M, centers C(E), compatibility centers B(E) and sets of all sharp elements S(E) of E. We show that in every such effect algebra E, every atomic block M and the set S(E) are bifull sub-lattice effect algebras of E. Consequently, if E is moreover sharply dominating then every atomic block M is again sharply dominating and the basic decompositions of elements (BDE of x) in E and in M coincide. Thus in the compatibility center B(E) of E, nonzero elements are dominated by central elements and their basic decompositions coincide with those in all atomic blocks and in E. Some further details which may be helpful under answers about the existence and properties of states are shown. Namely, we prove the existence of an (o)-continuous state on every sharply dominating Archimedean atomic lattice effect algebra E with $$B(E)\not =C(E).$$ Moreover, for compactly generated Archimedean lattice effect algebras the equivalence of (o)-continuity of states with their complete additivity is proved. Further, we prove “State smearing theorem” for these lattice effect algebras.

[1]  Anatolij Dvurecenskij On States on MV-algebras and their Applications , 2011, J. Log. Comput..

[2]  Zdenka Riecanová Pseudocomplemented lattice effect algebras and existence of states , 2009, Inf. Sci..

[3]  Z. Riecanová,et al.  Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .

[4]  R. J. Greechie,et al.  The center of an effect algebra , 1995 .

[5]  Vladimír Olejcek An atomic MV-effect algebra with non-atomic center , 2007, Kybernetika.

[6]  Frantisek Kopka Compatibility in D-posets , 1995 .

[7]  Zdenka Riečanová,et al.  Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .

[8]  Stanley Gudder,et al.  S-Dominating Effect Algebras , 1998 .

[9]  Tomás Kroupa,et al.  Every state on semisimple MV-algebra is integral , 2006, Fuzzy Sets Syst..

[10]  Zdenka Riečanová Subdirect Decompositions of Lattice Effect Algebras , 2003 .

[11]  Zdenka Riečanová Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .

[12]  Paolo Vitolo Compatibility and central elements in pseudo-effect algebras , 2010, Kybernetika.

[13]  Franco Montagna,et al.  An Algebraic Approach to States on MV-algebras , 2007, EUSFLAT Conf..

[14]  Zdenka Riečanová Proper Effect Algebras Admitting No States , 2001 .

[15]  Anatolij Dvurecenskij,et al.  State morphism MV-algebras , 2011, Int. J. Approx. Reason..

[16]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[17]  Zdenka Riecanová Continuous lattice effect algebras admitting order-continuous states , 2003, Fuzzy Sets Syst..

[18]  Zdenka Riecanová Archimedean atomic lattice effect algebras in which all sharp elements are central , 2006, Kybernetika.

[19]  Zdenka Riecanová States, Uniformities and Metrics on Lattice Effect Algebras , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[20]  Jan Paseka,et al.  State smearing theorems and the existence of states on some atomic lattice effect algebras , 2011, J. Log. Comput..

[21]  Jan Paseka,et al.  Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras , 2010 .

[22]  Zdenka Riečanová ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .

[23]  A. Nola,et al.  On some classes of state-morphism MV-algebras , 2009 .

[24]  Anatolij Dvurecenskij,et al.  Erratum to "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173] , 2010, Ann. Pure Appl. Log..

[25]  Jan Kühr,et al.  De Finetti theorem and Borel states in [0, 1]-valued algebraic logic , 2007, Int. J. Approx. Reason..

[26]  Zdenka Riecanová Basic decomposition of elements and Jauch-Piron effect algebras , 2005, Fuzzy Sets Syst..

[27]  Franco Montagna,et al.  MV-algebras with internal states and probabilistic fuzzy logics , 2009, Int. J. Approx. Reason..

[28]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[29]  Zdenka Riečanová,et al.  States on sharply dominating effect algebras , 2008 .

[30]  Sylvia Pulmannová,et al.  Orthocomplete effect algebras , 2003 .

[31]  Jan Paseka,et al.  Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras , 2010, Kybernetika.