Review: A posteriori error estimation techniques in practical finite element analysis

In this paper we review the basic concepts to obtain a posteriori error estimates for the finite element solution of an elliptic linear model problem. We give the basic ideas to establish global error estimates for the energy norm as well as goal-oriented error estimates. While we show how these error estimation techniques are employed for our simple model problem, the emphasis of the paper is on assessing whether these procedures are ready for use in practical linear finite element analysis. We conclude that the actually practical error estimation techniques do not provide mathematically proven bounds on the error and need to be used with care. The more accurate estimation procedures also do not provide proven bounds that, in general, can be computed efficiently. We also briefly comment upon the state of error estimations in nonlinear and transient analyses and when mixed methods are used. 2004 Elsevier Ltd. All rights reserved.

[1]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[2]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[3]  J. L. Meek,et al.  Structural Mechanics - Finite Elements , 2003 .

[4]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[5]  Peter Hansbo,et al.  Strategies for computing goal‐oriented a posteriori error measures in non‐linear elasticity , 2002 .

[6]  Jaime Peraire,et al.  Computing Bounds for Linear Functionals of Exact Weak Solutions to the Advection-Diffusion-Reaction Equation , 2005, SIAM J. Sci. Comput..

[7]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[8]  Ernst Rank,et al.  The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .

[9]  Roy D. Williams,et al.  Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .

[10]  K. Bathe,et al.  Influence functions and goal‐oriented error estimation for finite element analysis of shell structures , 2005 .

[11]  F. Hartmann,et al.  Finite element recovery techniques for local quantities of linear problems using fundamental solutions , 2003 .

[12]  Thomas Grätsch,et al.  Goal-oriented error estimation in the analysis of fluid flows with structural interactions , 2006 .

[13]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[14]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem , 2000 .

[15]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[16]  Ian H. Sloan,et al.  Computable error bounds for pointwise derivatives of a Neumann problem , 1998 .

[17]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[18]  Anthony T. Patera,et al.  A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .

[19]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[20]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[21]  D. Braess,et al.  Error indicators for mixed finite elements in 2-dimensional linear elasticity , 1995 .

[22]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[23]  Antonio Huerta,et al.  Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson's Equation , 2004, SIAM J. Numer. Anal..

[24]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[25]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[26]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[27]  Klaus-Jürgen Bathe,et al.  On higher-order-accuracy points in isoparametric finite element analysis and an application to error assessment , 2001 .

[28]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[29]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[30]  Nils-Erik Wiberg,et al.  A postprocessed error estimate and an adaptive procedure for the semidiscrete finite element method in dynamic analysis , 1994 .

[31]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[32]  Ekkehard Ramm,et al.  Local and global error estimations in linear structural dynamics , 2000 .

[33]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[34]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[35]  Carlos Alberto Brebbia,et al.  Finite element techniques in structural mechanics , 1970 .

[36]  Josep Sarrate,et al.  Adaptive finite element strategies based on error assessment , 1999 .

[37]  J. Tinsley Oden,et al.  Practical methods for a posteriori error estimation in engineering applications , 2003 .

[38]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[39]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[40]  Ivo Babuška,et al.  The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .

[41]  J. Oden,et al.  Goal-oriented error estimation and adaptivity for the finite element method , 2001 .

[42]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[43]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[44]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[45]  S. Adjerid,et al.  Even-odd goal-oriented a posteriori error estimation for elliptic problems , 2005 .

[46]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[47]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[48]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[49]  H. R. Riggs,et al.  Stress recovery and error estimation for shell structures , 2000 .

[50]  Ricardo H. Nochetto,et al.  Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..

[51]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[52]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[53]  S. Ohnimus,et al.  Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .

[54]  K. Bathe,et al.  Studies of finite element procedures—stress band plots and the evaluation of finite element meshes , 1986 .

[55]  Fabio Nobile,et al.  Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .

[56]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[57]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[58]  Ekkehard Ramm,et al.  A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .

[59]  J. Tinsley Oden,et al.  ERROR ESTIMATION OF EIGENFREQUENCIES FOR ELASTICITY AND SHELL PROBLEMS , 2003 .

[60]  Peter Hansbo,et al.  Time finite elements and error computation for (visco)plasticity with hardening or softening , 2003 .

[61]  Anthony T. Patera,et al.  A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .

[62]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[63]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[64]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[65]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[66]  Ivo Babuška,et al.  Guaranteed computable bounds for the exact error in the finite element solution. Part I : One-dimensional model problem , 1999 .

[67]  P. Ladevèze,et al.  ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY , 1996 .

[68]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[69]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[70]  K. Bathe,et al.  Measuring convergence of mixed finite element discretizations: an application to shell structures , 2003 .

[71]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .

[72]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[73]  I. Babuska,et al.  Analysis of Optimal Finite Element Meshes in R1 , 1979 .

[74]  K. Bathe Finite Element Procedures , 1995 .

[75]  Phill-Seung Lee,et al.  Towards improving the MITC9 shell element , 2003 .

[76]  Carsten Carstensen,et al.  Adaptive finite element analysis of geometrically non‐linear plates and shells, especially buckling , 1994 .

[77]  Michael J. Holst,et al.  Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..

[78]  Ian H. Sloan,et al.  LOCAL ERROR BOUNDS FOR POST-PROCESSED FINITE ELEMENT CALCULATIONS , 1999 .