Review: A posteriori error estimation techniques in practical finite element analysis
暂无分享,去创建一个
[1] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[2] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[3] J. L. Meek,et al. Structural Mechanics - Finite Elements , 2003 .
[4] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[5] Peter Hansbo,et al. Strategies for computing goal‐oriented a posteriori error measures in non‐linear elasticity , 2002 .
[6] Jaime Peraire,et al. Computing Bounds for Linear Functionals of Exact Weak Solutions to the Advection-Diffusion-Reaction Equation , 2005, SIAM J. Sci. Comput..
[7] D. Chapelle,et al. The Finite Element Analysis of Shells - Fundamentals , 2003 .
[8] Ernst Rank,et al. The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .
[9] Roy D. Williams,et al. Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .
[10] K. Bathe,et al. Influence functions and goal‐oriented error estimation for finite element analysis of shell structures , 2005 .
[11] F. Hartmann,et al. Finite element recovery techniques for local quantities of linear problems using fundamental solutions , 2003 .
[12] Thomas Grätsch,et al. Goal-oriented error estimation in the analysis of fluid flows with structural interactions , 2006 .
[13] Claes Johnson,et al. Adaptive finite element methods in computational mechanics , 1992 .
[14] Ekkehard Ramm,et al. A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem , 2000 .
[15] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[16] Ian H. Sloan,et al. Computable error bounds for pointwise derivatives of a Neumann problem , 1998 .
[17] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[18] Anthony T. Patera,et al. A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .
[19] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[20] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[21] D. Braess,et al. Error indicators for mixed finite elements in 2-dimensional linear elasticity , 1995 .
[22] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[23] Antonio Huerta,et al. Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson's Equation , 2004, SIAM J. Numer. Anal..
[24] D. Rovas,et al. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .
[25] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[26] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[27] Klaus-Jürgen Bathe,et al. On higher-order-accuracy points in isoparametric finite element analysis and an application to error assessment , 2001 .
[28] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[29] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[30] Nils-Erik Wiberg,et al. A postprocessed error estimate and an adaptive procedure for the semidiscrete finite element method in dynamic analysis , 1994 .
[31] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[32] Ekkehard Ramm,et al. Local and global error estimations in linear structural dynamics , 2000 .
[33] F. Brezzi,et al. A discourse on the stability conditions for mixed finite element formulations , 1990 .
[34] Klaus-Jürgen Bathe,et al. Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .
[35] Carlos Alberto Brebbia,et al. Finite element techniques in structural mechanics , 1970 .
[36] Josep Sarrate,et al. Adaptive finite element strategies based on error assessment , 1999 .
[37] J. Tinsley Oden,et al. Practical methods for a posteriori error estimation in engineering applications , 2003 .
[38] D. Griffin,et al. Finite-Element Analysis , 1975 .
[39] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[40] Ivo Babuška,et al. The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .
[41] J. Oden,et al. Goal-oriented error estimation and adaptivity for the finite element method , 2001 .
[42] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[43] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[44] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[45] S. Adjerid,et al. Even-odd goal-oriented a posteriori error estimation for elliptic problems , 2005 .
[46] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[47] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[48] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[49] H. R. Riggs,et al. Stress recovery and error estimation for shell structures , 2000 .
[50] Ricardo H. Nochetto,et al. Local problems on stars: A posteriori error estimators, convergence, and performance , 2003, Math. Comput..
[51] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[52] Klaus-Jürgen Bathe,et al. The inf–sup condition and its evaluation for mixed finite element methods , 2001 .
[53] S. Ohnimus,et al. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems , 2001 .
[54] K. Bathe,et al. Studies of finite element procedures—stress band plots and the evaluation of finite element meshes , 1986 .
[55] Fabio Nobile,et al. Analysis of a subdomain‐based error estimator for finite element approximations of elliptic problems , 2004 .
[56] D. Estep. A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .
[57] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[58] Ekkehard Ramm,et al. A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem , 1998 .
[59] J. Tinsley Oden,et al. ERROR ESTIMATION OF EIGENFREQUENCIES FOR ELASTICITY AND SHELL PROBLEMS , 2003 .
[60] Peter Hansbo,et al. Time finite elements and error computation for (visco)plasticity with hardening or softening , 2003 .
[61] Anthony T. Patera,et al. A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations , 2000 .
[62] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[63] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .
[64] I. Babuska,et al. The finite element method and its reliability , 2001 .
[65] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[66] Ivo Babuška,et al. Guaranteed computable bounds for the exact error in the finite element solution. Part I : One-dimensional model problem , 1999 .
[67] P. Ladevèze,et al. ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY , 1996 .
[68] Endre Süli,et al. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .
[69] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[70] K. Bathe,et al. Measuring convergence of mixed finite element discretizations: an application to shell structures , 2003 .
[71] Alexander G Iosilevich,et al. An evaluation of the MITC shell elements , 2000 .
[72] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[73] I. Babuska,et al. Analysis of Optimal Finite Element Meshes in R1 , 1979 .
[74] K. Bathe. Finite Element Procedures , 1995 .
[75] Phill-Seung Lee,et al. Towards improving the MITC9 shell element , 2003 .
[76] Carsten Carstensen,et al. Adaptive finite element analysis of geometrically non‐linear plates and shells, especially buckling , 1994 .
[77] Michael J. Holst,et al. Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..
[78] Ian H. Sloan,et al. LOCAL ERROR BOUNDS FOR POST-PROCESSED FINITE ELEMENT CALCULATIONS , 1999 .