Physically-based simulation of rainbows

In this article, we derive a physically-based model for simulating rainbows. Previous techniques for simulating rainbows have used either geometric optics (ray tracing) or Lorenz-Mie theory. Lorenz-Mie theory is by far the most accurate technique as it takes into account optical effects such as dispersion, polarization, interference, and diffraction. These effects are critical for simulating rainbows accurately. However, as Lorenz-Mie theory is restricted to scattering by spherical particles, it cannot be applied to real raindrops which are nonspherical, especially for larger raindrops. We present the first comprehensive technique for simulating the interaction of a wavefront of light with a physically-based water drop shape. Our technique is based on ray tracing extended to account for dispersion, polarization, interference, and diffraction. Our model matches Lorenz-Mie theory for spherical particles, but it also enables the accurate simulation of nonspherical particles. It can simulate many different rainbow phenomena including double rainbows and supernumerary bows. We show how the nonspherical raindrops influence the shape of the rainbows, and we provide a simulation of the rare twinned rainbow, which is believed to be caused by nonspherical water drops.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  K. Liou,et al.  Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models , 1995 .

[3]  Rodney J. Kubesh,et al.  Laboratory Measurements of Small Raindrop Distortion. Part 2: Oscillation Frequencies and Modes , 1991 .

[4]  Cyril Soler,et al.  Graphics gems revisited: fast and physically-based rendering of gemstones , 2004, SIGGRAPH 2004.

[5]  Bertram Walter,et al.  Modeling and Rendering of the Atmosphere Using Mie‐Scattering , 1997, Comput. Graph. Forum.

[6]  GutierrezDiego,et al.  Physically-based simulation of rainbows , 2012 .

[7]  Stanley David Gedzelman,et al.  Simulating rainbows in their atmospheric environment , 2008 .

[8]  K. Liou,et al.  Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space , 1996 .

[9]  David A. Goss,et al.  Color and Light in Nature , 1997 .

[10]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[11]  David S. Ebert,et al.  Efficient Rendering of Atmospheric Phenomena , 2004, Rendering Techniques.

[12]  Jeppe Revall Frisvad,et al.  Computing the scattering properties of participating media using Lorenz-Mie theory , 2007, ACM Trans. Graph..

[13]  Jeppe Revall Frisvad,et al.  The Aristotelian rainbow: from philosophy to computer graphics , 2007, GRAPHITE '07.

[14]  Gary W. Meyer,et al.  Wavelength dependent reflectance functions , 1994, SIGGRAPH.

[15]  Harry T. Ochs,et al.  Laboratory Measurements of Small Raindrop Distortion. Part I: Axis Ratios and Fall Behavior , 1991 .

[16]  Michael C. Barris,et al.  The Rainbow Bridge: Rainbows in Art, Myth, and Science. , 2002 .

[17]  R. J. Joseph,et al.  Advances in Computational Electrodynamics: The Finite - Di erence Time - Domain Method , 1998 .

[18]  Robert G. Greenler,et al.  Rainbows, halos, and glories , 1980 .

[19]  Pat Hanrahan,et al.  Beam tracing polygonal objects , 1984, SIGGRAPH.

[20]  Werner Purgathofer,et al.  Combined Rendering of Polarization and Fluorescence Effects , 2001, Rendering Techniques.

[21]  Cyril Soler,et al.  Graphics Gems Revisited , 2004 .

[22]  E. Villermaux,et al.  Single-drop fragmentation determines size distribution of raindrops , 2009 .

[23]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[24]  Allen Taflove,et al.  A Novel Method to Analyze Electromagnetic Scattering of Complex Objects , 1982, IEEE Transactions on Electromagnetic Compatibility.

[25]  R. L. Lee Mie theory, airy theory, and the natural rainbow. , 1998, Applied optics.

[26]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[27]  Feng Xu,et al.  Debye series for light scattering by a spheroid. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Stanley David Gedzelman Simulating rainbows in their atmospheric environment. , 2008, Applied optics.

[29]  P. Barber Absorption and scattering of light by small particles , 1984 .

[30]  Michael J. Wozny,et al.  Polarization and birefringency considerations in rendering , 1994, SIGGRAPH.

[31]  G. Airy,et al.  ON the Intensity of Light in the neighbourhood of a Caustic , 1838 .

[32]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[33]  F. Kenton Musgrave Prisms and rainbows: a dispersion model for computer graphics , 1989 .

[34]  Philip Laven,et al.  Simulation of rainbows, coronas, and glories by use of Mie theory. , 2003, Applied optics.

[35]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[36]  R. Jones,et al.  A New Calculus for the Treatment of Optical SystemsII. Proof of Three General Equivalence Theorems , 1941 .

[37]  Alexander E. Kaplan,et al.  Optical physics (A) , 1986 .

[38]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[39]  A. Slingo,et al.  RAINBOWS, HALOS AND GLORIES , 1981 .

[40]  Shree K. Nayar,et al.  Shedding light on the weather , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[41]  Holly Rushmeier,et al.  Input for participating media , 2008, SIGGRAPH '08.

[42]  K. Beard,et al.  A New Model for the Equilibrium Shape of Raindrops , 1987 .

[43]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[44]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[45]  Steven Collins,et al.  Adaptive Splatting for Specular to Diffuse Light Transport , 1995 .

[46]  Lawrence B. Wolff,et al.  Ray tracing with polarization parameters , 1990, IEEE Computer Graphics and Applications.

[47]  V. Chandrasekar,et al.  Raindrop axis ratios and size distributions in Florida rainshafts: an assessment of multiparameter radar algorithms , 1998, IEEE Trans. Geosci. Remote. Sens..

[48]  David K. Lynch,et al.  Color and Light in Nature, Second Edition , 2001 .

[49]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .