Homogenization of the Stokes equations with high-contrast viscosity
暂无分享,去创建一个
[1] V. Girault,et al. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .
[2] E. Sanchez-Palencia,et al. On the asymptotics of the fluid flow past an array of fixed obstacles , 1982 .
[3] Robert V. Kohn,et al. Topics in the Mathematical Modelling of Composite Materials , 1997 .
[4] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[5] G. Allaire. Homogénéisation des équations de Stokes et de Navier-Stokes , 1989 .
[6] G. Milton. Composite materials with poisson's ratios close to — 1 , 1992 .
[7] A. Brillard. Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods , 1987 .
[8] Grégoire Allaire,et al. Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes , 1991 .
[9] Thérèse Lévy. Fluid flow through an array of fixed particles , 1983 .
[10] E. Ya. Khruslov,et al. Homogenized Models of Composite Media , 1991 .
[11] Nicoletta Tchou,et al. Fibered microstructures for some nonlocal Dirichlet forms , 2001 .
[12] H. Brinkman. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .
[13] P. Seppecher,et al. CLOSURE OF THE SET OF DIFFUSION FUNCTIONALS WITH RESPECT TO THE MOSCO-CONVERGENCE , 2002 .
[14] Pierre Seppecher,et al. A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .
[15] Umberto Mosco,et al. Composite media and asymptotic dirichlet forms , 1994 .
[16] M. E. Bogovskii. Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .
[17] J. Deny,et al. Espaces de dirichlet , 1958 .