A DNN Inference Acceleration Algorithm in Heterogeneous Edge Computing: Joint Task Allocation and Model Partition

[1]  Trevor N. Mudge,et al.  Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge , 2017, ASPLOS.

[2]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[3]  Prashant Pandey,et al.  Cloud computing , 2010, ICWET.

[4]  Zhi Zhou,et al.  Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing , 2019, IEEE Transactions on Wireless Communications.

[5]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[6]  Saibal Mukhopadhyay,et al.  Edge-Host Partitioning of Deep Neural Networks with Feature Space Encoding for Resource-Constrained Internet-of-Things Platforms , 2018, 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[7]  Greg Byrd,et al.  The Internet of Everything , 2017, Computer.

[8]  Xiangyu Zhang,et al.  ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Panlong Yang,et al.  Online DAG Scheduling with On-Demand Function Configuration in Edge Computing , 2019, WASA.

[10]  Dan Wang,et al.  Dynamic Adaptive DNN Surgery for Inference Acceleration on the Edge , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[11]  Khaled Ben Letaief,et al.  Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices , 2016, IEEE Journal on Selected Areas in Communications.

[12]  Abhishek Verma,et al.  Residual Squeeze VGG16 , 2017, ArXiv.

[13]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[14]  Tao Jiang,et al.  Edge Computing Framework for Cooperative Video Processing in Multimedia IoT Systems , 2018, IEEE Transactions on Multimedia.

[15]  Quoc V. Le,et al.  Listen, attend and spell: A neural network for large vocabulary conversational speech recognition , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Jianxiong Xiao,et al.  DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[17]  Xiangyu Zhang,et al.  ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design , 2018, ECCV.

[18]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[19]  H. T. Kung,et al.  BranchyNet: Fast inference via early exiting from deep neural networks , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[20]  Feng Qian,et al.  DeepWear: Adaptive Local Offloading for On-Wearable Deep Learning , 2017, IEEE Transactions on Mobile Computing.

[21]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[22]  Xu Chen,et al.  Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing , 2019, Proceedings of the IEEE.

[23]  Jie Xu,et al.  Privacy-Aware Edge Computing Based on Adaptive DNN Partitioning , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[24]  Xing Chen,et al.  Cost-Driven Off-Loading for DNN-Based Applications Over Cloud, Edge, and End Devices , 2019, IEEE Transactions on Industrial Informatics.

[25]  Enrique Alba,et al.  Smart Cities , 2016, Lecture Notes in Computer Science.