Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies.

[1]  L. Chelico,et al.  Biochemical Basis of APOBEC3 Deoxycytidine Deaminase Activity on Diverse DNA Substrates. , 2018, ACS infectious diseases.

[2]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[3]  M. Grant,et al.  Evasion of adaptive immunity by HIV through the action of host APOBEC3G/F enzymes , 2017, AIDS Research and Therapy.

[4]  R. Siliciano,et al.  Defective HIV-1 Proviruses Are Expressed and Can Be Recognized by Cytotoxic T Lymphocytes, which Shape the Proviral Landscape. , 2017, Cell host & microbe.

[5]  M. Emerman,et al.  Cytidine deaminase efficiency of the lentiviral viral restriction factor APOBEC3C correlates with dimerization , 2017, Nucleic acids research.

[6]  K. A. Ahmed,et al.  Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G , 2016, Journal of Virology.

[7]  M. Emerman,et al.  A Single Nucleotide Polymorphism in Human APOBEC3C Enhances Restriction of Lentiviruses , 2016, PLoS pathogens.

[8]  P. Bieniasz,et al.  The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid , 2016, PLoS pathogens.

[9]  Ryan C. Burdick,et al.  APOBEC3 proteins can copackage and comutate HIV-1 genomes , 2016, Nucleic acids research.

[10]  T. Ndung’u,et al.  Functional characterization of Vif proteins from HIV-1 infected patients with different APOBEC3G haplotypes , 2016, AIDS.

[11]  R. Siliciano,et al.  Defective proviruses rapidly accumulate during acute HIV-1 infection , 2016, Nature Medicine.

[12]  O. Nikolaitchik,et al.  Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation , 2016, PLoS pathogens.

[13]  J. Goedert,et al.  Role of APOBEC3F Gene Variation in HIV-1 Disease Progression and Pneumocystis Pneumonia , 2016, PLoS genetics.

[14]  R. Harris,et al.  The Binding Interface between Human APOBEC3F and HIV-1 Vif Elucidated by Genetic and Computational Approaches. , 2015, Cell reports.

[15]  W. Sugiura,et al.  Structural Insights into HIV-1 Vif-APOBEC3F Interaction , 2015, Journal of Virology.

[16]  Claire F. Woodworth,et al.  Impact of APOBEC Mutations on CD8+ T Cell Recognition of HIV Epitopes Varies Depending on the Restricting HLA , 2015, Journal of acquired immune deficiency syndromes.

[17]  L. Chelico,et al.  Natural Polymorphisms and Oligomerization of Human APOBEC3H Contribute to Single-stranded DNA Scanning Ability* , 2015, The Journal of Biological Chemistry.

[18]  V. Calvez,et al.  Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage , 2015, Antimicrobial Agents and Chemotherapy.

[19]  P. Bieniasz,et al.  Single-Cell and Single-Cycle Analysis of HIV-1 Replication , 2015, PLoS pathogens.

[20]  J. Dudley,et al.  APOBECs and virus restriction. , 2015, Virology.

[21]  J. Ule,et al.  Promiscuous RNA Binding Ensures Effective Encapsidation of APOBEC3 Proteins by HIV-1 , 2015, PLoS pathogens.

[22]  M. Emerman,et al.  Natural Polymorphisms in Human APOBEC3H and HIV-1 Vif Combine in Primary T Lymphocytes to Affect Viral G-to-A Mutation Levels and Infectivity , 2014, PLoS genetics.

[23]  L. Chelico,et al.  Determinants of Efficient Degradation of APOBEC3 Restriction Factors by HIV-1 Vif , 2014, Journal of Virology.

[24]  Kazuyuki Aihara,et al.  APOBEC3D and APOBEC3F Potently Promote HIV-1 Diversification and Evolution in Humanized Mouse Model , 2014, PLoS pathogens.

[25]  M. Burattini,et al.  In vivo HIV-1 hypermutation and viral loads among antiretroviral-naive Brazilian patients. , 2014, AIDS research and human retroviruses.

[26]  L. Chelico,et al.  Suppression of APOBEC3-mediated restriction of HIV-1 by Vif , 2014, Front. Microbiol..

[27]  M. Malim,et al.  Human APOBEC3 Induced Mutation of Human Immunodeficiency Virus Type-1 Contributes to Adaptation and Evolution in Natural Infection , 2014, PLoS pathogens.

[28]  Claire F. Woodworth,et al.  Positioning of APOBEC3G/F Mutational Hotspots in the Human Immunodeficiency Virus Genome Favors Reduced Recognition by CD8+ T Cells , 2014, PloS one.

[29]  L. Chelico,et al.  Different Mutagenic Potential of HIV-1 Restriction Factors APOBEC3G and APOBEC3F Is Determined by Distinct Single-Stranded DNA Scanning Mechanisms , 2014, PLoS pathogens.

[30]  Yi Zang,et al.  Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 Vif , 2014, Nature.

[31]  Jeffrey E. Lee,et al.  Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F , 2013, Nature Communications.

[32]  F. Hecht,et al.  HIV-1 Vif adaptation to human APOBEC3H haplotypes. , 2013, Cell host & microbe.

[33]  M. Emerman,et al.  Host gene evolution traces the evolutionary history of ancient primate lentiviruses , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  W. Blattner,et al.  Elevated hypermutation levels in HIV-1 natural viral suppressors. , 2013, Virology.

[35]  M. Emerman,et al.  Identification and antiviral activity of common polymorphisms in the APOBEC3 locus in human populations. , 2013, Virology.

[36]  C. Schiffer,et al.  Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain. , 2013, Structure.

[37]  L. Chelico,et al.  HIV-1 Viral Infectivity Factor (Vif) Alters Processive Single-stranded DNA Scanning of the Retroviral Restriction Factor APOBEC3G , 2013, The Journal of Biological Chemistry.

[38]  V. Pathak,et al.  APOBEC3G Restricts HIV-1 to a Greater Extent than APOBEC3F and APOBEC3DE in Human Primary CD4+ T Cells and Macrophages , 2012, Journal of Virology.

[39]  J. Hultquist,et al.  The Restriction Factors of Human Immunodeficiency Virus* , 2012, The Journal of Biological Chemistry.

[40]  W. Sugiura,et al.  The APOBEC3C crystal structure and the interface for HIV-1 Vif binding , 2012, Nature Structural &Molecular Biology.

[41]  R. Harris,et al.  Endogenous Origins of HIV-1 G-to-A Hypermutation and Restriction in the Nonpermissive T Cell Line CEM2n , 2012, PLoS pathogens.

[42]  Sean L. Evans,et al.  T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction , 2011, Nature.

[43]  Andrej Sali,et al.  Vif hijacks CBF-β to degrade APOBEC3G and promote HIV-1 infection , 2011, Nature.

[44]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[45]  Lela Lackey,et al.  Human and Rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H Demonstrate a Conserved Capacity To Restrict Vif-Deficient HIV-1 , 2011, Journal of Virology.

[46]  M. Emerman,et al.  The Breadth of Antiviral Activity of Apobec3DE in Chimpanzees Has Been Driven by Positive Selection , 2011, Journal of Virology.

[47]  M. Kotler,et al.  Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif. , 2011, Journal of molecular biology.

[48]  S. Sawyer,et al.  Two-stepping through time: mammals and viruses. , 2011, Trends in microbiology.

[49]  H. Matsuo,et al.  Identification of a Single Amino Acid Required for APOBEC3 Antiretroviral Cytidine Deaminase Activity , 2011, Journal of Virology.

[50]  L. Chelico,et al.  Intensity of Deoxycytidine Deamination of HIV-1 Proviral DNA by the Retroviral Restriction Factor APOBEC3G Is Mediated by the Noncatalytic Domain* , 2011, The Journal of Biological Chemistry.

[51]  Xiaojun Wang,et al.  Analysis of Human APOBEC3H Haplotypes and Anti-Human Immunodeficiency Virus Type 1 Activity , 2011, Journal of Virology.

[52]  W. Brown,et al.  A Single Amino Acid in Human APOBEC3F Alters Susceptibility to HIV-1 Vif* , 2010, The Journal of Biological Chemistry.

[53]  V. Pathak,et al.  Identification of Specific Determinants of Human APOBEC3F, APOBEC3C, and APOBEC3DE and African Green Monkey APOBEC3F That Interact with HIV-1 Vif , 2010, Journal of Virology.

[54]  M. Khan,et al.  Stably Expressed APOBEC3F Has Negligible Antiviral Activity , 2010, Journal of Virology.

[55]  W. Brown,et al.  Long-Term Restriction by APOBEC3F Selects Human Immunodeficiency Virus Type 1 Variants with Restored Vif Function , 2010, Journal of Virology.

[56]  Ariana Harari,et al.  Moderate Influence of Human APOBEC3F on HIV-1 Replication in Primary Lymphocytes , 2010, Journal of Virology.

[57]  Ariana Harari,et al.  The Localization of APOBEC3H Variants in HIV-1 Virions Determines Their Antiviral Activity , 2010, Journal of Virology.

[58]  R. McClelland,et al.  Analysis of the Percentage of Human Immunodeficiency Virus Type 1 Sequences That Are Hypermutated and Markers of Disease Progression in a Longitudinal Cohort, Including One Individual with a Partially Defective Vif , 2009, Journal of Virology.

[59]  V. Pathak,et al.  Likely Role of APOBEC3G-Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance , 2009, PLoS pathogens.

[60]  M. Emerman,et al.  Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. , 2008, Cell host & microbe.

[61]  Ma Luo,et al.  Human Immunodeficiency Virus (HIV) Type 1 Proviral Hypermutation Correlates with CD4 Count in HIV-Infected Women from Kenya , 2008, Journal of Virology.

[62]  Ariana Harari,et al.  Cytidine deamination induced HIV-1 drug resistance , 2008, Proceedings of the National Academy of Sciences.

[63]  M. Malim,et al.  APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation , 2007, Journal of Biological Chemistry.

[64]  C. Moore,et al.  Population Level Analysis of Human Immunodeficiency Virus Type 1 Hypermutation and Its Relationship with APOBEC3G and vif Genetic Variation , 2006, Journal of Virology.

[65]  W. J. Esselman,et al.  Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family , 2006, Journal of Virology.

[66]  P. Bieniasz,et al.  Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. , 2006, Virology.

[67]  D. Ho,et al.  Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification , 2005, PLoS pathogens.

[68]  M. Neuberger,et al.  Mutational comparison of the single-domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases provides insight into their DNA target site specificities , 2005, Nucleic acids research.

[69]  Tara L. Kieffer,et al.  G→A Hypermutation in Protease and Reverse Transcriptase Regions of Human Immunodeficiency Virus Type 1 Residing in Resting CD4+ T Cells In Vivo , 2005, Journal of Virology.

[70]  Amalio Telenti,et al.  APOBEC3G Genetic Variants and Their Influence on the Progression to AIDS , 2004, Journal of Virology.

[71]  M. Khan,et al.  Production of infectious human immunodeficiency virus type 1 does not require depletion of APOBEC3G from virus-producing cells , 2004, Retrovirology.

[72]  W. Brown,et al.  APOBEC3F Properties and Hypermutation Preferences Indicate Activity against HIV-1 In Vivo , 2004, Current Biology.

[73]  B. Cullen,et al.  A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV‐1 and HIV‐2 Vif proteins , 2004, The EMBO journal.

[74]  Takeshi Kurosu,et al.  Human APOBEC3F Is Another Host Factor That Blocks Human Immunodeficiency Virus Type 1 Replication , 2004, Journal of Virology.

[75]  R. König,et al.  Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome , 2004, Nature Structural &Molecular Biology.

[76]  V. Pathak,et al.  A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  D. Trono,et al.  A Single Amino Acid Determinant Governs the Species-specific Sensitivity of APOBEC3G to Vif Action* , 2004, Journal of Biological Chemistry.

[78]  N. Landau,et al.  A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Reuben S Harris,et al.  The Vif Protein of HIV Triggers Degradation of the Human Antiretroviral DNA Deaminase APOBEC3G , 2003, Current Biology.

[80]  Yunkai Yu,et al.  Induction of APOBEC3G Ubiquitination and Degradation by an HIV-1 Vif-Cul5-SCF Complex , 2003, Science.

[81]  M. Khan,et al.  The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. , 2003 .

[82]  M. Malim,et al.  The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif , 2003, Nature Medicine.

[83]  M. Marin,et al.  HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation , 2003, Nature Medicine.

[84]  W. Greene,et al.  HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. , 2003, Molecular cell.

[85]  R. König,et al.  Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif , 2003, Cell.

[86]  Hui Zhang,et al.  The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA , 2003, Nature.

[87]  Gersende Caron,et al.  Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts , 2003, Nature.

[88]  M. Malim,et al.  DNA Deamination Mediates Innate Immunity to Retroviral Infection , 2003, Cell.

[89]  Reuben S Harris,et al.  RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. , 2002, Molecular cell.

[90]  M. Malim,et al.  Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein , 2002, Nature.

[91]  Michel Henry,et al.  Sustained G-->A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain Vau group O genome. , 2002, The Journal of general virology.

[92]  J. Kelly,et al.  The V122I cardiomyopathy variant of transthyretin increases the velocity of rate-limiting tetramer dissociation, resulting in accelerated amyloidosis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  F. McCutchan,et al.  Human Immunodeficiency Virus Type 1 DNA Sequences Genetically Damaged by Hypermutation Are Often Abundant in Patient Peripheral Blood Mononuclear Cells and May Be Generated during Near-Simultaneous Infection and Activation of CD4+ T Cells , 2001, Journal of Virology.

[94]  Bette T. Korber,et al.  Detecting hypermutations in viral sequences with an emphasis on G A hypermutation , 2000, Bioinform..

[95]  F. Gage,et al.  In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector , 1996, Science.

[96]  M Sala,et al.  G-->A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[97]  A. Meyerhans,et al.  Selection, recombination, and G----A hypermutation of human immunodeficiency virus type 1 genomes , 1991, Journal of virology.

[98]  V. Pathak,et al.  Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. , 1990, Proceedings of the National Academy of Sciences of the United States of America.