Guaranteed Robust Nonlinear State Estimator with Application to Global Vehicle Tracking

This paper deals with guaranteed recursive state estimation in a bounded-error context with application to global dynamical vehicle tracking. As in Kalman or approximate Bayesian filtering, prediction and correction phases alternate. A distinctive feature of the method advocated here is that its results are guaranteed, in the sense that the statements made about the possible values of the state vector are mathmatically proved, although all calculations are performed approximately on a computer. Sets will thus be provided that are guaranteed to contain all values of the state that are consistent with the information available and the bounds assumed on the state perturbations and measurement errors. Complexity issues are addressed and some tools are provided to facilitate real-time implementation. Results obtained with an actual vehicle are reported.

[1]  E. Walter,et al.  Guaranteed recursive nonlinear state estimation using interval analysis , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[2]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  Eric Walter,et al.  Guaranteed recursive non‐linear state bounding using interval analysis , 2002 .

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[6]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[7]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[8]  Eric Walter,et al.  Initial localization by set inversion , 2002, IEEE Trans. Robotics Autom..

[9]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[10]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[11]  M. Agarwal,et al.  A discretized nonlinear state estimator for batch processes , 1995 .

[12]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[13]  H. W. Sorenson,et al.  Kalman filtering : theory and application , 1985 .

[14]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[15]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[16]  Eric Walter,et al.  Guaranteed robust nonlinear estimation with application to robot localization , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[17]  Eric Walter,et al.  Set inversion via interval analysis for nonlinear bounded-error estimation , 1993, Autom..

[18]  Eric Walter,et al.  Robust Autonomous Robot Localization Using Interval Analysis , 2000, Reliab. Comput..

[19]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[20]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[21]  Marek Kopicki,et al.  Mini-Project II Monte Carlo Localisation for mobile robots , 2004 .

[22]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[23]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.