Robust parallel eigenvector computation for the non-symmetric eigenvalue problem

Abstract A standard approach for computing eigenvectors of a non-symmetric matrix reduced to real Schur form relies on a variant of backward substitution. Backward substitution is prone to overflow. To avoid overflow, the LAPACK eigenvector routine DTREVC3 associates every eigenvector with a scaling factor and dynamically rescales an entire eigenvector during the backward substitution such that overflow cannot occur. When many eigenvectors are computed, DTREVC3 applies backward substitution successively for every eigenvector. This corresponds to level-2 BLAS operations and constitutes a bottleneck. This paper redesigns the backward substitution such that the entire computation is cast as tile operations (level-3 BLAS). By replacing LAPACK’s scaling factor with tile-local scaling factors, our solver decouples the tiles and sustains parallel scalability even when a lot of numerical scaling is necessary.

[1]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[2]  Carl Christian Kjelgaard Mikkelsen Well-conditioned eigenvalue problems that overflow , 2020, ArXiv.

[3]  Robert L. Smith,et al.  A Robust Complex Division in Scilab , 2012, ArXiv.

[4]  Axel Ruhe Properties of a matrix with a very ill-conditioned eigenproblem , 1970 .

[5]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[6]  Carl Christian Kjelgaard Mikkelsen,et al.  Robust Solution of Triangular Linear Systems , 2017 .

[7]  Edward Anderson Robust Triangular Solves for Use in Condition Estimation , 1991 .

[8]  Jack Poulson,et al.  Accelerating eigenvector and pseudospectra computation using blocked multi-shift triangular solves , 2016, ArXiv.

[9]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[10]  Jack J. Dongarra,et al.  Accelerating Computation of Eigenvectors in the Dense Nonsymmetric Eigenvalue Problem , 2014, VECPAR.

[11]  Nicholas J. Higham,et al.  Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Lars Karlsson,et al.  Blocked Algorithms for Robust Solution of Triangular Linear Systems , 2017, PPAM.

[14]  Lars Karlsson,et al.  Parallel robust solution of triangular linear systems , 2019, Concurr. Comput. Pract. Exp..

[15]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[16]  Robert A. van de Geijn,et al.  Elemental: A New Framework for Distributed Memory Dense Matrix Computations , 2013, TOMS.

[17]  Lars Karlsson,et al.  Scalable eigenvector computation for the non-symmetric eigenvalue problem , 2019, Parallel Comput..