Robust parallel eigenvector computation for the non-symmetric eigenvalue problem
暂无分享,去创建一个
[1] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[2] Carl Christian Kjelgaard Mikkelsen. Well-conditioned eigenvalue problems that overflow , 2020, ArXiv.
[3] Robert L. Smith,et al. A Robust Complex Division in Scilab , 2012, ArXiv.
[4] Axel Ruhe. Properties of a matrix with a very ill-conditioned eigenproblem , 1970 .
[5] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[6] Carl Christian Kjelgaard Mikkelsen,et al. Robust Solution of Triangular Linear Systems , 2017 .
[7] Edward Anderson. Robust Triangular Solves for Use in Condition Estimation , 1991 .
[8] Jack Poulson,et al. Accelerating eigenvector and pseudospectra computation using blocked multi-shift triangular solves , 2016, ArXiv.
[9] G. W. Stewart,et al. Matrix algorithms , 1998 .
[10] Jack J. Dongarra,et al. Accelerating Computation of Eigenvectors in the Dense Nonsymmetric Eigenvalue Problem , 2014, VECPAR.
[11] Nicholas J. Higham,et al. Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] Lars Karlsson,et al. Blocked Algorithms for Robust Solution of Triangular Linear Systems , 2017, PPAM.
[14] Lars Karlsson,et al. Parallel robust solution of triangular linear systems , 2019, Concurr. Comput. Pract. Exp..
[15] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[16] Robert A. van de Geijn,et al. Elemental: A New Framework for Distributed Memory Dense Matrix Computations , 2013, TOMS.
[17] Lars Karlsson,et al. Scalable eigenvector computation for the non-symmetric eigenvalue problem , 2019, Parallel Comput..