Monitoring AGNs with Hβ Asymmetry. III. Long-term Reverberation Mapping Results of 15 Palomar–Green Quasars

In this third paper of the series reporting on the reverberation mapping campaign of active galactic nuclei with asymmetric Hβ emission-line profiles, we present results for 15 Palomar–Green quasars using spectra obtained between the end of 2016–2021 May. This campaign combines long time spans with relatively high cadence. For eight objects, both the time lags obtained from the entire light curves and the measurements from individual observing seasons are provided. Reverberation mapping of nine of our targets has been attempted for the first time, while the results for six others can be compared with previous campaigns. We measure the Hβ time lags over periods of years and estimate their black hole masses. The long duration of the campaign enables us to investigate their broad-line region (BLR) geometry and kinematics for different years by using velocity-resolved lags, which demonstrate signatures of diverse BLR geometry and kinematics. The BLR geometry and kinematics of individual objects are discussed. In this sample, the BLR kinematics of Keplerian/virialized motion and inflow is more common than that of outflow.

[1]  Wei Zheng,et al.  The Lick AGN Monitoring Project 2016: Velocity-resolved Hβ Lags in Luminous Seyfert Galaxies , 2021, The Astrophysical Journal.

[2]  L. Ho,et al.  Reverberation Mapping of Two Luminous Quasars: The Broad-line Region Structure and Black Hole Mass , 2021, The Astrophysical Journal.

[3]  D. Schneider,et al.  Taking a Long Look: A Two-decade Reverberation Mapping Study of High-luminosity Quasars , 2021, The Astrophysical Journal.

[4]  S. Tsygankov,et al.  Multiwavelength monitoring and reverberation mapping of a changing look event in the Seyfert galaxy NGC 3516 , 2021, 2104.11097.

[5]  J. Ge,et al.  Variation of Broad Emission Lines from QSOs with Optical/UV Periodicity to Test the Interpretation of Supermassive Binary Black Holes , 2021, The Astrophysical Journal.

[6]  D. Gerdes,et al.  OzDES Reverberation Mapping Programme: the first Mg ii lags from 5 yr of monitoring , 2021, Monthly Notices of the Royal Astronomical Society.

[7]  A. Udalski,et al.  Time Delay of Mg ii Emission Response for the Luminous Quasar HE 0435-4312: toward Application of the High-accretor Radius–Luminosity Relation in Cosmology , 2020, The Astrophysical Journal.

[8]  D. N. Okhmat,et al.  Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548 , 2020, The Astrophysical Journal.

[9]  L. Ho,et al.  Monitoring AGNs with Hβ Asymmetry. II. Reverberation Mapping of Three Seyfert Galaxies Historically Displaying Hβ Profiles with Changing Asymmetry: Mrk 79, NGC 3227, and Mrk 841 , 2020, The Astrophysical Journal.

[10]  L. Ho,et al.  Evidence for Two Distinct Broad-line Regions from Reverberation Mapping of PG 0026+129 , 2020, The Astrophysical Journal.

[11]  L. Ho,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Estimating Masses of Black Holes in Quasars with Single-epoch Spectroscopy , 2020, The Astrophysical Journal.

[12]  A. Udalski,et al.  Time-delay Measurement of Mg ii Broad-line Response for the Highly Accreting Quasar HE 0413-4031: Implications for the Mg ii–based Radius–Luminosity Relation , 2020, The Astrophysical Journal.

[13]  L. Ho,et al.  Broad-line Region of the Quasar PG 2130+099 from a Two-year Reverberation Mapping Campaign with High Cadence , 2020, The Astrophysical Journal.

[14]  Yan-Rong Li,et al.  Kinematic Signatures of Reverberation Mapping of Close Binaries of Supermassive Black Holes in Active Galactic Nuclei , 2018, Astronomy & Astrophysics.

[15]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[16]  L. Ho,et al.  Kinematic Signatures of Reverberation Mapping of Close Binaries of Supermassive Black Holes in Active Galactic Nuclei. II. Atlas of Two-dimensional Transfer Functions , 2020 .

[17]  B. Peterson,et al.  Reverberation Measurements of the Inner Radii of the Dust Tori in Quasars , 2019, The Astrophysical Journal.

[18]  H. A. Le,et al.  The Seoul National University AGN Monitoring Project. II. BLR Size and Black Hole Mass of Two AGNs , 2019, The Astrophysical Journal.

[19]  Jian-Min Wang,et al.  The Radius–Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei , 2019, The Astrophysical Journal.

[20]  H. A. Le,et al.  A 10,000-solar-mass black hole in the nucleus of a bulgeless dwarf galaxy , 2019, Nature Astronomy.

[21]  A. Udalski,et al.  Time Delay Measurement of Mg ii Line in CTS C30.10 with SALT , 2019, The Astrophysical Journal.

[22]  Paul S. Smith,et al.  Kinematics of the Broad-line Region of 3C 273 from a 10 yr Reverberation Mapping Campaign , 2018, The Astrophysical Journal.

[23]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[24]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VIII. Structure of the Broad-line Region and Mass of the Central Black Hole in Mrk 142 , 2018, The Astrophysical Journal.

[25]  L. Ho,et al.  Monitoring AGNs with Hβ Asymmetry. I. First Results: Velocity-resolved Reverberation Mapping , 2018, The Astrophysical Journal.

[26]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VII. Reconstruction of Velocity-delay Maps by the Maximum Entropy Method , 2018, The Astrophysical Journal.

[27]  D. N. Okhmat,et al.  Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies , 2018, The Astrophysical Journal.

[28]  N. Morrell,et al.  Reverberation Mapping of Luminous Quasars at High z , 2018, The Astrophysical Journal.

[29]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags , 2018, 1802.03022.

[30]  Bangalore,et al.  The Ultra-fast Outflow of the Quasar PG 1211+143 as Viewed by Time-averaged Chandra Grating Spectroscopy , 2017, 1712.07118.

[31]  Ran Wang,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry , 2017, 1711.03114.

[32]  D. Schneider,et al.  Reverberation Mapping of High-Luminosity Quasars , 2017, Front. Astron. Space Sci..

[33]  Chen Hu,et al.  Tidally disrupted dusty clumps as the origin of broad emission lines in active galactic nuclei , 2017, 1710.03419.

[34]  Astrophysics,et al.  The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0 , 2017, 1706.07060.

[35]  T. Treu,et al.  The Structure of the Broad-line Region in Active Galactic Nuclei. II. Dynamical Modeling of Data From the AGN10 Reverberation Mapping Campaign , 2017, 1705.02346.

[36]  M. Fausnaugh A New Approach to the Internal Calibration of Reverberation-Mapping Spectra , 2016, 1609.04014.

[37]  D. N. Okhmat,et al.  Reverberation Mapping of Optical Emission Lines in Five Active Galaxies , 2016, 1610.00008.

[38]  I. Pâris,et al.  Discovery of extreme [O III] λ5007 Å outflows in high-redshift red quasars , 2015, 1512.02642.

[39]  S. B. Cenko,et al.  THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES , 2015, 1503.01146.

[40]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set , 2013, 1311.6475.

[41]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[42]  A. Schwarzenberg-Czerny,et al.  Towards equation of state of dark energy from quasar monitoring: Reverberation strategy , 2012, 1212.0472.

[43]  T. Boroson,et al.  A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES , 2012, 1509.02575.

[44]  Brendon J. Brewer,et al.  Diffusive nested sampling , 2009, Stat. Comput..

[45]  G. Xie,et al.  Periodicity analysis of the radio light curve of the Seyfert galaxy III Zw 2 , 2010 .

[46]  Astronomy,et al.  First Results from the Lick AGN Monitoring Project: The Mass of the Black Hole in Arp 151 , 2008, 0810.3004.

[47]  L. Ho,et al.  A Systematic Analysis of Fe II Emission in Quasars: Evidence for Inflow to the Central Black Hole , 2008, 0807.2059.

[48]  B. Wills,et al.  Spectral Properties from Lyα to Hα for an Essentially Complete Sample of Quasars. I. Data , 2007, astro-ph/0703690.

[49]  B. Trakhtenbrot,et al.  Cosmic Evolution of Mass Accretion Rate and Metallicity in Active Galactic Nuclei , 2006, astro-ph/0607654.

[50]  T. Hovatta,et al.  24 year monitoring of extragalactic sources at 22 and 37 GHz , 2005 .

[51]  D. Maoz,et al.  The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei , 2005, astro-ph/0504484.

[52]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[53]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[54]  G. M. Gilbert,et al.  High-resolution observations of a complete sample of 27 FR II radio galaxies and quasars with 0.3 < z < 0.6 , 2004 .

[55]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[56]  R. Smith,et al.  Evolution of the Nuclear Accretion Disk Emission in NGC 1097: Getting Closer to the Black Hole , 2003, astro-ph/0308327.

[57]  R. Zamanov,et al.  Searching for the physical drivers of eigenvector 1: influence of black hole mass and Eddington ratio , 2003, astro-ph/0307367.

[58]  T. Zwitter,et al.  An Optical Spectroscopic Atlas of Low-Redshift Active Galactic Nuclei , 2003 .

[59]  P. O’Brien,et al.  A high-velocity ionized outflow and XUV photosphere in the narrow emission line quasar PG1211+143 , 2003, astro-ph/0303603.

[60]  Yu. F. Malkov,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A 13 Year Study of Spectral Variability in NGC 5548 , 2002, astro-ph/0208064.

[61]  A. Markowitz,et al.  X-Ray Spectral Variability and Rapid Variability of the Soft X-Ray Spectrum Seyfert 1 Galaxies Arakelian 564 and Ton S180 , 2001, astro-ph/0108387.

[62]  Yu. F. Malkov,et al.  Monitoring of the optical and 2.5-11.7 mu m spectrum and mid-IR imaging of the Seyfert 1 galaxy Mrk 279 with ISO , 2001, astro-ph/0102356.

[63]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[64]  Bradley M. Peterson,et al.  On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei , 1998, astro-ph/9802103.

[65]  Claudia Winge,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. IX. Ultraviolet Observations of Fairall 9 , 1997 .

[66]  M. Livio,et al.  Elliptical accretion disks in active galactic nuclei , 1995 .

[67]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[68]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[69]  I. Wanders,et al.  AN ALGORITHM FOR THE RELATIVE SCALING OF SPECTRA , 1992 .

[70]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[71]  Wei Zheng,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I, an 8 month campaign of monitoring NGC 5548 with IUE , 1991 .

[72]  H. Mendelson,et al.  High-rate spectroscopic active galactic nucleus monitoring at the Wise Observatory. I. Markarian 279 , 1990 .

[73]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[74]  J. Halpern,et al.  Structure of line-emitting accretion disks in active galactic nuclei - Arp 102B , 1989 .

[75]  J. Sulentic Toward a classification scheme for broad-line profiles in active galactic nuclei , 1989 .

[76]  A. Filippenko,et al.  Kinematic evidence for a relativistic Keplerian disk - Arp 102B , 1989 .

[77]  I. Browne,et al.  SYSTEMATIC ASYMMETRIES IN H-BETA LINES OF RADIO-LOUD QUASARS , 1989 .

[78]  B. Peterson,et al.  The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes , 1987 .

[79]  C. M. Gaskell,et al.  Line variations in quasars and Seyfert galaxies , 1986 .

[80]  J. B. Oke,et al.  More spectroscopy of the fuzz around QSOs: additional evidence for two types of QSO , 1985 .

[81]  M. Robertis Observations of the H-beta region in some broad-line objects , 1985 .

[82]  J. MacKenty,et al.  3CR249.1 and Ton202—luminous QSOs in interacting systems , 1983, Nature.

[83]  Richard F. Green,et al.  Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. , 1983 .

[84]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[85]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[86]  G. Ferland,et al.  Asymmetries of the emission lines of QSOs, Seyfert galaxies, and Novae , 1979 .

[87]  C. Foltz,et al.  Asymmetric, broad hydrogen emission lines of Seyfert 1 galaxies , 1979 .