Recording of brain activity across spatial scales

Brain activity reveals exquisite coordination across spatial scales, from local microcircuits to brain-wide networks. Understanding how the brain represents, transforms and communicates information requires simultaneous recordings from distributed nodes of whole brain networks with single-cell resolution. Realizing multi-site recordings from communicating populations is hampered by the need to isolate clusters of interacting cells, often on a day-to-day basis. Chronic implantation of multi-electrode arrays allows long-term tracking of activity. Lithography on thin films provides a means to produce arrays of variable resolution, a high degree of flexibility, and minimal tissue displacement. Sequential application of surface arrays to monitor activity across brain-wide networks and subsequent implantation of laminar arrays to target specific populations enables continual refinement of spatial scale while maintaining coverage.

[1]  Thomas D. Mrsic-Flogel,et al.  Experience-Dependent Specialization of Receptive Field Surround for Selective Coding of Natural Scenes , 2014, Neuron.

[2]  A. Kleinschmidt,et al.  Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[4]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[5]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[6]  M. Häusser,et al.  Electrophysiology in the age of light , 2009, Nature.

[7]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[8]  Eran Stark,et al.  Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. , 2014, Journal of neurophysiology.

[9]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[10]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[11]  V. Jayaraman,et al.  Encoding and Decoding of Overlapping Odor Sequences , 2006, Neuron.

[12]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[13]  Laura Astolfi,et al.  Dynamic connectivity among cortical layers in local and large‐scale sensory processing , 2014, The European journal of neuroscience.

[14]  C. Sherrington Ferrier lecture.—Some functional problems attaching to convergence , 1929 .

[15]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[16]  P. Fries,et al.  Robust Gamma Coherence between Macaque V1 and V2 by Dynamic Frequency Matching , 2013, Neuron.

[17]  Sunita Mandon,et al.  Switching Neuronal Inputs by Differential Modulations of Gamma-Band Phase-Coherence , 2012, The Journal of Neuroscience.

[18]  P. Broca Sur le siège de la faculté du langage articulé , 1865 .

[19]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[20]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[21]  Jon H Kaas,et al.  Topographic Maps are Fundamental to Sensory Processing , 1997, Brain Research Bulletin.

[22]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[23]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[24]  D. Spalding The Principles of Psychology , 1873, Nature.

[25]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[27]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[28]  Henry Kennedy,et al.  Cortical High-Density Counterstream Architectures , 2013, Science.

[29]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[30]  Jerald D. Kralik,et al.  Chronic, multisite, multielectrode recordings in macaque monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[32]  C. Gray,et al.  Adaptive Coincidence Detection and Dynamic Gain Control in Visual Cortical Neurons In Vivo , 2003, Neuron.

[33]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[34]  Alexander Maier,et al.  Anisotropy of ongoing neural activity in the primate visual cortex , 2014, Eye and brain.

[35]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[36]  S. Bressler,et al.  Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[38]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[39]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[40]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[41]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[42]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[43]  A. Reyes Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro , 2003, Nature Neuroscience.

[44]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.

[45]  A. Kohn,et al.  Gamma and the Coordination of Spiking Activity in Early Visual Cortex , 2013, Neuron.

[46]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[47]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[48]  W. Singer Cortical dynamics revisited , 2013, Trends in Cognitive Sciences.

[49]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[50]  H B Barlow,et al.  Single units and sensation: a neuron doctrine for perceptual psychology? , 1972, Perception.

[51]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[52]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[53]  M. Raichle Two views of brain function , 2010, Trends in Cognitive Sciences.

[54]  M. Posner,et al.  Localization of cognitive operations in the human brain. , 1988, Science.

[55]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[56]  H Petsche,et al.  Synchronization between temporal and parietal cortex during multimodal object processing in man. , 1999, Cerebral cortex.

[57]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[58]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[59]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[60]  John P. Cunningham,et al.  Neural population dynamics during , 2012 .

[61]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[62]  Mitchell Glickstein,et al.  Foundations of the neuron doctrine , 1993, Medical History.

[63]  P. Broca,et al.  Remarques sur le siege de la faculte du langage articule suivies d'une observation d'aphemie , 1861 .

[64]  M. Carandini,et al.  Stimulus contrast modulates functional connectivity in visual cortex , 2009, Nature Neuroscience.

[65]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[66]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[67]  R. Desimone,et al.  Stimulus repetition modulates gamma-band synchronization in primate visual cortex , 2014, Proceedings of the National Academy of Sciences.

[68]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[69]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[70]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[71]  Robert Oostenveld,et al.  Visual Cortical Gamma-Band Activity During Free Viewing of Natural Images , 2013, Cerebral cortex.

[72]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[73]  Matthew R. Krause,et al.  Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation , 2010, Neuron.

[74]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[75]  M M Mesulam,et al.  Large‐scale neurocognitive networks and distributed processing for attention, language, and memory , 1990, Annals of neurology.

[76]  A. Oeltermann,et al.  Hippocampal–cortical interaction during periods of subcortical silence , 2012, Nature.

[77]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[78]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[79]  W. Singer,et al.  Functional Specificity of Long-Range Intrinsic and Interhemispheric Connections in the Visual Cortex of Strabismic Cats , 1997, The Journal of Neuroscience.

[80]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[81]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[82]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[83]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[84]  Matthew T. Kaufman,et al.  Neural population dynamics during reaching , 2012, Nature.

[85]  Christopher D. Harvey,et al.  Choice-specific sequences in parietal cortex during a virtual-navigation decision task , 2012, Nature.

[86]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[87]  B L McNaughton,et al.  Coordinated Reactivation of Distributed Memory Traces in Primate Neocortex , 2002, Science.