Asymptotic dynamics of quantum discord in open quantum systems

It is well known that quantum entanglement makes certain tasks in quantum information theory possible. However, there are also quantum tasks that display a quantum advantage without entanglement. Distinguishing classical and quantum correlations in quantum systems is therefore of both practical and fundamental importance. Realistic quantum systems are not closed, and therefore it is important to study the various correlations when the system loses its coherence due to interactions with the environment. In this paper, we study in detail the dynamics of different kinds of correlations, classical correlation, quantum discord and entanglement in open quantum systems, in particular, a two-qubit system evolving under Kossakowski-type quantum dynamical semigroups of completely positive maps. In such an environment, classical and quantum correlations can even persist asymptotically. By analytic and numerical analysis, we find that the quantum discord is larger than the classical correlation for asymptotic states. Furthermore, we show that the quantum discord is more resistant to the action of the environment than quantum entanglement, and it can persist even in the asymptotic long-time regime.

[1]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[2]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[3]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[4]  D. Chruściński,et al.  Witnessing quantum discord in 2 x N systems , 2010, 1004.0434.

[5]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[6]  Heng Fan,et al.  Correlations in the Grover search , 2009, 0904.2703.

[7]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[8]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[9]  Matthias D. Lang,et al.  Quantum discord and the geometry of Bell-diagonal states. , 2010, Physical review letters.

[10]  M. Horodecki,et al.  Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.

[11]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[12]  Robabeh Rahimi,et al.  Single-experiment-detectable nonclassical correlation witness , 2009, 0911.3460.

[13]  S. Luo Quantum discord for two-qubit systems , 2008 .

[14]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[15]  Fabio Benatti,et al.  Entanglement and entropy rates in open quantum systems , 2009, 0909.1297.

[16]  Ryszard Horodecki,et al.  Quantum Information , 2001, Acta Physica Polonica A.

[17]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[18]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[19]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .

[20]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[21]  J. Piilo,et al.  Sudden transition between classical and quantum decoherence. , 2010, Physical review letters.

[22]  V. Vedral,et al.  Classical and quantum correlations under decoherence , 2009, 0905.3396.

[23]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[24]  G. Guo,et al.  Experimental investigation of classical and quantum correlations under decoherence. , 2009, Nature communications.

[25]  A. Wehrl General properties of entropy , 1978 .

[26]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[27]  F. Benatti,et al.  Environment induced bipartite entanglement , 2008, 0805.4790.

[28]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[29]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[30]  Nan Li,et al.  Total versus quantum correlations in quantum states , 2007 .

[31]  Amílcar Sernadas,et al.  Quantum Computation and Information , 2006 .

[32]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[33]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[34]  M. Horodecki,et al.  Irreversibility for all bound entangled states. , 2005, Physical Review Letters.

[35]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[36]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[37]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.

[38]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[39]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[40]  L. Kuang,et al.  Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence , 2010, 1005.4204.

[41]  N. J. Cerf,et al.  Multipartite nonlocality without entanglement in many dimensions , 2006 .

[42]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[43]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[44]  Benjamin Schumacher,et al.  Quantum mutual information and the one-time pad , 2006 .

[45]  Daniel A. Lidar,et al.  Vanishing quantum discord is necessary and sufficient for completely positive maps. , 2008, Physical review letters.

[46]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[47]  Animesh Datta,et al.  Signatures of nonclassicality in mixed-state quantum computation , 2008, 0811.4003.

[48]  Meyer Sophisticated quantum search without entanglement , 2000, Physical review letters.