Extreme fluctuations in small-world networks with relaxational dynamics.

We study the distribution and scaling of the extreme height fluctuations for Edwards-Wilkinson-type relaxation on small-world substrates. When random links are added to a one-dimensional lattice, the average size of the fluctuations becomes finite (synchronized state) and the extreme height diverges only logarithmically in the large system-size limit. This latter property ensures synchronization in a practical sense in small-world coupled multi-component autonomous systems. The statistics of the extreme heights is governed by the Fisher-Tippett-Gumbel distribution.

[1]  M. Mézard,et al.  Universality classes for extreme value statistics , 1997, cond-mat/9707047.

[2]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[3]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[4]  Richard M. Fujimoto,et al.  Parallel discrete event simulation , 1990, CACM.

[5]  G Korniss,et al.  Roughness scaling for Edwards-Wilkinson relaxation in small-world networks. , 2004, Physical review letters.

[6]  T. Antal,et al.  1/f noise and extreme value statistics. , 2001, Physical review letters.

[7]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[8]  M. D. Menezes,et al.  First-order transition in small-world networks , 1999, cond-mat/9903426.

[9]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[10]  R. Monasson Diffusion, localization and dispersion relations on “small-world” lattices , 1999 .

[11]  George Rowlands,et al.  Extremum statistics: a framework for data analysis , 2001 .

[12]  S Raychaudhuri,et al.  Maximal height scaling of kinetically growing surfaces. , 2001, Physical review letters.

[13]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[14]  L. Amaral,et al.  Small-World Networks: Evidence for a Crossover Picture , 1999, cond-mat/9903108.

[15]  Christensen,et al.  Universal fluctuations in correlated systems , 1999, Physical review letters.

[16]  Boris D. Lubachevsky,et al.  Efficient parallel simulations of dynamic Ising spin systems , 1988 .

[17]  Kevin E. Bassler,et al.  Network dynamics: Jamming is limited in scale-free systems , 2004, Nature.

[18]  Fluctuations in finite critical and turbulent systems. , 2000, Physical review letters.

[19]  Mark Newman,et al.  Models of the Small World , 2000 .

[20]  M. Hastings,et al.  Mean-field and anomalous behavior on a small-world network. , 2003, Physical review letters.

[21]  Statistics of extremal intensities for Gaussian interfaces. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[23]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[24]  B. Sapoval,et al.  Chemical fracture statistics and universal distribution of extreme values , 2002, cond-mat/0205130.

[25]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  J. Pinton,et al.  Universality of rare fluctuations in turbulence and critical phenomena , 1998, Nature.

[27]  L. Amaral,et al.  Erratum: Small-World Networks: Evidence for a Crossover Picture [Phys. Rev. Lett. 82, 3180 (1999)] , 1999, cond-mat/9906247.

[28]  Zoltán Toroczkai,et al.  Suppressing Roughness of Virtual Times in Parallel Discrete-Event Simulations , 2003, Science.

[29]  M. A. de Menezes,et al.  Fluctuations in network dynamics. , 2004, Physical review letters.

[30]  Phase ordering on small-world networks with nearest-neighbor edges. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  S. Strogatz Exploring complex networks , 2001, Nature.

[32]  Zoltán Toroczkai,et al.  From Massively Parallel Algorithms and Fluctuating Time Horizons to Non-equilibrium Surface Growth , 2000, Physical review letters.