Inactivation Effects of Non-Thermal Atmospheric-Pressure Helium Plasma Jet on Staphylococcus aureus Biofilms

The antimicrobial effects and mechanism of helium atmospheric-pressure plasma jet (APPJ) treatment on Staphylococcus aureus biofilms are evaluated in vitro. The S. aureus biofilms are more resistant to the plasma treatment than adherent bacteria. The APPJ-treated S. aureus biofilms disclose a depth/layer-related intra-bacterial ROS accumulation effect. Plasma exposure may induce bacterial oxidative stress and trigger the production of intracellular reactive oxygen species (ROS) in the biofilms, which possibly contributes to bacteria death in addition to direct etching from the exterior of bacteria. The findings provide insights into the mechanism of biofilm inactivation by plasma reactive species and plasma-induced intracellular ROS.

[1]  Cheng Zhang,et al.  Effect of O2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses , 2014 .

[2]  Mounir Laroussi,et al.  Guided ionization waves : theory and experiments , 2014 .

[3]  Liping Zhao,et al.  Staphylococcus aureus glucose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner. , 2014, International journal of medical microbiology : IJMM.

[4]  Martin Clupek,et al.  Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2 , 2014 .

[5]  Stephan Reuter,et al.  Plasmas for medicine , 2013 .

[6]  P. Bruggeman,et al.  Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet , 2013 .

[7]  A. Kramer,et al.  Antimicrobial Efficacy of an Atmospheric Pressure Plasma Jet Against Biofilms of Pseudomonas aeruginosa and Staphylococcus epidermidis , 2013 .

[8]  N. Gomes,et al.  Contribution of reactive oxygen species to UV-B-induced damage in bacteria. , 2012, Journal of photochemistry and photobiology. B, Biology.

[9]  Liping Zhao,et al.  Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner , 2012, BMC Microbiology.

[10]  O. Eichwald,et al.  Inactivation of Gram-positive biofilms by low-temperature plasma jet at atmospheric pressure , 2012 .

[11]  Karsten Schröder,et al.  Atmospheric Pressure Plasma: A High-Performance Tool for the Efficient Removal of Biofilms , 2012, PloS one.

[12]  Deborah O'Connell,et al.  Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. , 2012, FEMS immunology and medical microbiology.

[13]  David B. Graves,et al.  The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology , 2012 .

[14]  G. Shama,et al.  Complex responses of microorganisms as a community to a flowing atmospheric plasma , 2012 .

[15]  Kostya Ostrikov,et al.  Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet , 2012 .

[16]  S. Fang,et al.  Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas , 2012, ICOPS 2012.

[17]  K. Ostrikov,et al.  Plasma‐Induced Death of HepG2 Cancer Cells: Intracellular Effects of Reactive Species , 2012 .

[18]  Balaraman Kalyanaraman,et al.  Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. , 2012, Free radical biology & medicine.

[19]  A. Clyne,et al.  Hydroxyl Radical and Hydrogen Peroxide are Primarily Responsible for Dielectric Barrier Discharge Plasma-Induced Angiogenesis , 2011 .

[20]  A. Schubert,et al.  Removing Biofilms from Microstructured Titanium Ex Vivo: A Novel Approach Using Atmospheric Plasma Technology , 2011, PloS one.

[21]  A. Kramer,et al.  Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. , 2011, Journal of clinical periodontology.

[22]  Yuan Pan,et al.  How deep can plasma penetrate into a biofilm , 2011 .

[23]  M. Rong,et al.  Main Species and Physicochemical Processes in Cold Atmospheric‐pressure He + O2 Plasmas , 2010 .

[24]  D. Balkwill,et al.  Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray , 2010 .

[25]  A. Goodman Sit and Stay a While: How BfiSR Controls Irreversible Attachment in Pseudomonas aeruginosa Biofilms , 2010, Journal of bacteriology.

[26]  A. Kramer,et al.  Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet , 2010, New Journal of Physics.

[27]  Liping Zhao,et al.  Staphylococcus aureus AI-2 Quorum Sensing Associates with the KdpDE Two-Component System To Regulate Capsular Polysaccharide Synthesis and Virulence , 2010, Infection and Immunity.

[28]  Gary Friedman,et al.  Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. , 2010, American journal of infection control.

[29]  Jae Koo Lee,et al.  900‐MHz Nonthermal Atmospheric Pressure Plasma Jet for Biomedical Applications , 2010 .

[30]  Akira Mizuno,et al.  Biological Evaluation of DNA Damage in Bacteriophages Inactivated by Atmospheric Pressure Cold Plasma , 2010 .

[31]  Jennifer H. Shin,et al.  Plasma effects on subcellular structures , 2010 .

[32]  A. Schubert,et al.  Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. , 2010, Journal of medical microbiology.

[33]  Satoshi Hamaguchi,et al.  Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Low‐Temperature Atmospheric Pressure Plasma Application , 2010 .

[34]  Gregor E. Morfill,et al.  Plasma medicine: an introductory review , 2009 .

[35]  Gregor E. Morfill,et al.  The effect of low-temperature plasma on bacteria as observed by repeated AFM imaging , 2009 .

[36]  F. Huang,et al.  The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. , 2009, Biomaterials.

[37]  M. Laroussi,et al.  Low-Temperature Plasmas for Medicine? , 2009, IEEE Transactions on Plasma Science.

[38]  Kurt Vandervoort,et al.  Is gas-discharge plasma a new solution to the old problem of biofilm inactivation? , 2009, Microbiology.

[39]  Yuan Pan,et al.  The roles of the various plasma agents in the inactivation of bacteria , 2008 .

[40]  Gregory Fridman,et al.  Applied Plasma Medicine , 2008 .

[41]  Yuan Pan,et al.  A single electrode room-temperature plasma jet device for biomedical applications , 2008 .

[42]  Xi-Wei Hu,et al.  An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine , 2008 .

[43]  Mounir Laroussi,et al.  Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review , 2007 .

[44]  Gregory Fridman,et al.  Comparison of Direct and Indirect Effects of Non‐Thermal Atmospheric‐Pressure Plasma on Bacteria , 2007 .

[45]  Mounir Laroussi,et al.  Inactivation of bacteria by the plasma pencil , 2006 .

[46]  F. Rossi,et al.  Decontamination of surfaces by low pressure plasma discharges , 2006 .

[47]  N. Abramzon,et al.  Biofilm Destruction by RF High-Pressure Cold Plasma Jet , 2006, IEEE Transactions on Plasma Science.

[48]  Liu Peng,et al.  Development of a new atmospheric pressure cold plasma jet generator and application in sterilization , 2006 .

[49]  H. Kumon,et al.  [Biofilm infections]. , 2003, Nihon rinsho. Japanese journal of clinical medicine.

[50]  G. Bennett Biofilms: Investigative Methods & Applications , 2001 .

[51]  B. Britigan,et al.  Role of oxidants in microbial pathophysiology , 1997, Clinical microbiology reviews.

[52]  G. Karp Cell and molecular biology : concepts and experiments / Gerald Karp , 1996 .