Web Data Quality: Current State and New Challenges

The standardization and adoption of Semantic Web technologies has resulted in an unprecedented volume of data being published as Linked Data (LD). However, the "publish first, refine later" philosophy leads to various quality problems arising in the underlying data such as incompleteness, inconsistency and semantic ambiguities. In this article, we describe the current state of Data Quality in the Web of Data along with details of the three papers accepted for the International Journal on Semantic Web and Information Systems' (IJSWIS) Special Issue on Web Data Quality. Additionally, we identify new challenges that are specific to the Web of Data and provide insights into the current progress and future directions for each of those challenges.

[1]  Matthias Jarke,et al.  Fundamentals of Data Warehouses , 2000, Springer Berlin Heidelberg.

[2]  Elisa Bertino,et al.  Guest Editors' Introduction: Data Quality in the Internet Era , 2010, IEEE Internet Comput..

[3]  Stuart E. Madnick,et al.  Measuring Data Believability: A Provenance Approach , 2007, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[4]  Carlo Batini,et al.  Data Quality: Concepts, Methodologies and Techniques (Data-Centric Systems and Applications) , 2006 .

[5]  Jens Lehmann,et al.  Quality Assessment Methodologies for Linked Open Data A Systematic Literature Review and Conceptual Framework , 2012 .

[6]  Mariano P. Consens,et al.  ExpLOD: Summary-Based Exploration of Interlinking and RDF Usage in the Linked Open Data Cloud , 2010, ESWC.

[7]  Felix Naumann,et al.  Profiling and mining RDF data with ProLOD++ , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[8]  Richard Y. Wang,et al.  Anchoring data quality dimensions in ontological foundations , 1996, CACM.

[9]  Carlo Batini,et al.  Data Quality: Concepts, Methodologies and Techniques , 2006, Data-Centric Systems and Applications.

[10]  Christian Bizer,et al.  Quality-Driven Information Filtering- In the Context of Web-Based Information Systems , 2007 .

[11]  James Gleick,et al.  Chaos, Making a New Science , 1987 .

[12]  Jens Lehmann,et al.  Assessing Linked Data Mappings Using Network Measures , 2012, ESWC.

[13]  Deborah L. McGuinness,et al.  When owl: sameAs Isn't the Same: An Analysis of Identity in Linked Data , 2010, SEMWEB.

[14]  R. P. Srivastava,et al.  A conceptual framework and belief‐function approach to assessing overall information quality , 2003, Int. J. Intell. Syst..

[15]  Jens Lehmann,et al.  User-driven quality evaluation of DBpedia , 2013, I-SEMANTICS '13.

[16]  Christian Bizer,et al.  Sieve: linked data quality assessment and fusion , 2012, EDBT-ICDT '12.

[17]  Thomas Redman,et al.  Data quality for the information age , 1996 .

[18]  Felix Naumann,et al.  Quality-Driven Query Answering for Integrated Information Systems , 2002, Lecture Notes in Computer Science.

[19]  Serena Villata,et al.  A deontic logic semantics for licenses composition in the web of data , 2013, ICAIL.

[20]  Olaf Hartig,et al.  Publishing and Consuming Provenance Metadata on the Web of Linked Data , 2010, IPAW.

[21]  Diane M. Strong,et al.  Beyond Accuracy: What Data Quality Means to Data Consumers , 1996, J. Manag. Inf. Syst..

[22]  Maribel Acosta,et al.  Crowdsourcing Linked Data Quality Assessment , 2013, SEMWEB.

[23]  Christian Bizer,et al.  Quality-driven information filtering using the WIQA policy framework , 2009, J. Web Semant..

[24]  Steffen Stadtmüller,et al.  On the Diversity and Availability of Temporal Information in Linked Open Data , 2012, SEMWEB.