DUAL METHODS FOR THE NUMERICAL SOLUTION OF THE UNIVARIATE POWER MOMENT PROBLEM

The purpose of this paper is twofold. First to present a brief survey of some of the basic results related to the univariate moment problem, including Prekopa's dual approach for solving the discrete moment problem. Second we propose a new method for solving the continuous power moment problem when some higher order divided differences of the objective function are nonnegative. The proposed method combines Prekopa's dual approach for solving the discrete moment problem with a cutting-plane type procedure for solving linear semi-infinite programming problems.

[1]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[2]  András Prékopa,et al.  Discrete Higher Order Convex Functions and their Applications , 2001 .

[3]  Károly Jordán Calculus of finite differences , 1951 .

[4]  András Prékopa Sharp Bounds on Probabilities Using Linear Programming , 1990, Oper. Res..

[5]  F. Hausdorff,et al.  Momentprobleme für ein endliches Intervall. , 1923 .

[6]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[7]  P. Tchebycheff,et al.  Sur deux théorèmes relatifs aux probabilités , 1890 .

[8]  J. Wheeler,et al.  Chapter 3 Bounds for Averages using Moment Constraints , 1970 .

[9]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.

[10]  H. Hamburger,et al.  Über eine Erweiterung des Stieltjesschen Momentenproblems , 1921 .

[11]  T. Stieltjes,et al.  Recherches sur quelques séries semi-convergentes , 1886 .

[12]  Endre Boros,et al.  Closed Form Two-Sided Bounds for Probabilities that At Least r and Exactly r Out of n Events Occur , 1989, Math. Oper. Res..

[13]  Klaus Glashoff Duality theory of semi-infinite programming , 1979 .

[14]  Å. Björck,et al.  Solution of Vandermonde Systems of Equations , 1970 .

[15]  András Prékopa,et al.  On Multivariate Discrete Moment Problems and Their Applications to Bounding Expectations and Probabilities , 2004, Math. Oper. Res..

[16]  András Prékopa,et al.  Inequalities on expectations based on the knowledge of multivariate moments , 1992 .

[17]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[18]  HettichR.,et al.  Semi-infinite programming , 1979 .

[19]  Stephen M. Samuels,et al.  Bonferroni-Type Probability Bounds as an Application of the Theory of Tchebycheff Systems , 1989 .

[20]  R. P. Boas,et al.  A General Moment Problem , 1941 .

[21]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[22]  András Prékopa,et al.  Boole-Bonferroni Inequalities and Linear Programming , 1988, Oper. Res..

[23]  András Prékopa,et al.  The discrete moment problem and linear programming , 1990, Discret. Appl. Math..

[24]  J. Kemperman The General Moment Problem, A Geometric Approach , 1968 .

[25]  E. N.,et al.  The Calculus of Finite Differences , 1934, Nature.

[26]  K. Isii On sharpness of tchebycheff-type inequalities , 1962 .

[27]  Miroslav Morháč An iterative error-free algorithm to solve Vandermonde systems , 2001, Appl. Math. Comput..

[28]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[29]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[30]  K. Isii The extrema of probability determined by generalized moments (I) bounded random variables , 1960 .

[31]  Abraham Charnes,et al.  ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .

[32]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[33]  Stephen P. Boyd,et al.  Applications of semidefinite programming , 1999 .

[34]  Tinne Hoff Kjeldsen,et al.  The Early History of the Moment Problem , 1993 .

[35]  W W Cooper,et al.  DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Marco A. López,et al.  Semi-infinite programming : recent advances , 2001 .

[37]  H. Hamburger,et al.  Beiträge zur Konvergenztheorie der Stieltjesschen Kettenbrüche , 1919 .