DUAL METHODS FOR THE NUMERICAL SOLUTION OF THE UNIVARIATE POWER MOMENT PROBLEM
暂无分享,去创建一个
[1] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[2] András Prékopa,et al. Discrete Higher Order Convex Functions and their Applications , 2001 .
[3] Károly Jordán. Calculus of finite differences , 1951 .
[4] András Prékopa. Sharp Bounds on Probabilities Using Linear Programming , 1990, Oper. Res..
[5] F. Hausdorff,et al. Momentprobleme für ein endliches Intervall. , 1923 .
[6] A. Shapiro. ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .
[7] P. Tchebycheff,et al. Sur deux théorèmes relatifs aux probabilités , 1890 .
[8] J. Wheeler,et al. Chapter 3 Bounds for Averages using Moment Constraints , 1970 .
[9] G. A. Miller,et al. MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.
[10] H. Hamburger,et al. Über eine Erweiterung des Stieltjesschen Momentenproblems , 1921 .
[11] T. Stieltjes,et al. Recherches sur quelques séries semi-convergentes , 1886 .
[12] Endre Boros,et al. Closed Form Two-Sided Bounds for Probabilities that At Least r and Exactly r Out of n Events Occur , 1989, Math. Oper. Res..
[13] Klaus Glashoff. Duality theory of semi-infinite programming , 1979 .
[14] Å. Björck,et al. Solution of Vandermonde Systems of Equations , 1970 .
[15] András Prékopa,et al. On Multivariate Discrete Moment Problems and Their Applications to Bounding Expectations and Probabilities , 2004, Math. Oper. Res..
[16] András Prékopa,et al. Inequalities on expectations based on the knowledge of multivariate moments , 1992 .
[17] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[18] HettichR.,et al. Semi-infinite programming , 1979 .
[19] Stephen M. Samuels,et al. Bonferroni-Type Probability Bounds as an Application of the Theory of Tchebycheff Systems , 1989 .
[20] R. P. Boas,et al. A General Moment Problem , 1941 .
[21] M. A. López-Cerdá,et al. Linear Semi-Infinite Optimization , 1998 .
[22] András Prékopa,et al. Boole-Bonferroni Inequalities and Linear Programming , 1988, Oper. Res..
[23] András Prékopa,et al. The discrete moment problem and linear programming , 1990, Discret. Appl. Math..
[24] J. Kemperman. The General Moment Problem, A Geometric Approach , 1968 .
[25] E. N.,et al. The Calculus of Finite Differences , 1934, Nature.
[26] K. Isii. On sharpness of tchebycheff-type inequalities , 1962 .
[27] Miroslav Morháč. An iterative error-free algorithm to solve Vandermonde systems , 2001, Appl. Math. Comput..
[28] J Figueira,et al. Stochastic Programming , 1998, J. Oper. Res. Soc..
[29] Nesa L'abbe Wu,et al. Linear programming and extensions , 1981 .
[30] K. Isii. The extrema of probability determined by generalized moments (I) bounded random variables , 1960 .
[31] Abraham Charnes,et al. ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .
[32] Ioana Popescu,et al. Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..
[33] Stephen P. Boyd,et al. Applications of semidefinite programming , 1999 .
[34] Tinne Hoff Kjeldsen,et al. The Early History of the Moment Problem , 1993 .
[35] W W Cooper,et al. DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[36] Marco A. López,et al. Semi-infinite programming : recent advances , 2001 .
[37] H. Hamburger,et al. Beiträge zur Konvergenztheorie der Stieltjesschen Kettenbrüche , 1919 .