A GATA-1-regulated microRNA locus essential for erythropoiesis

MicroRNAs (miRNAs) control tissue development, but their mechanism of regulation is not well understood. We used a gene complementation strategy combined with microarray screening to identify miRNAs involved in the formation of erythroid (red blood) cells. Two conserved miRNAs, miR 144 and miR 451, emerged as direct targets of the critical hematopoietic transcription factor GATA-1. In vivo, GATA-1 binds a distal upstream regulatory element to activate RNA polymerase II-mediated transcription of a single common precursor RNA (pri-miRNA) encoding both mature miRNAs. Zebrafish embryos depleted of miR 451 by using antisense morpholinos form erythroid precursors, but their development into mature circulating red blood cells is strongly and specifically impaired. These results reveal a miRNA locus that is required for erythropoiesis and uncover a new regulatory axis through which GATA-1 controls this process.

[1]  R. Shivdasani MicroRNAs: regulators of gene expression and cell differentiation. , 2006, Blood.

[2]  G. Blobel,et al.  Context-dependent regulation of GATA-1 by friend of GATA-1. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Orkin,et al.  Targeted Deletion of a High-Affinity GATA-binding Site in the GATA-1 Promoter Leads to Selective Loss of the Eosinophil Lineage In Vivo , 2002, The Journal of experimental medicine.

[4]  Vladimir Benes,et al.  A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). , 2006, RNA.

[5]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[6]  Chris P. Miller,et al.  MicroRNA expression dynamics during murine and human erythroid differentiation. , 2007, Experimental hematology.

[7]  M. Cole,et al.  Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment , 1986, Nature.

[8]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[9]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[10]  Harvey F Lodish,et al.  Myogenic factors that regulate expression of muscle-specific microRNAs. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  L. Zon,et al.  Use of the zebrafish system to study primitive and definitive hematopoiesis. , 2005, Annual review of genetics.

[12]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[13]  S. Orkin,et al.  Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line , 1997, Molecular and cellular biology.

[14]  Koichiro Muta,et al.  Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. , 2007, Biochemical and biophysical research communications.

[15]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[16]  Francesca Chiaromonte,et al.  ESPERR: learning strong and weak signals in genomic sequence alignments to identify functional elements. , 2006, Genome research.

[17]  S. Orkin,et al.  FOG, a Multitype Zinc Finger Protein, Acts as a Cofactor for Transcription Factor GATA-1 in Erythroid and Megakaryocytic Differentiation , 1997, Cell.

[18]  Yoko Fukuda,et al.  An Evolutionarily Conserved Mechanism for MicroRNA-223 Expression Revealed by MicroRNA Gene Profiling , 2007, Cell.

[19]  Alessandro Fatica,et al.  A Minicircuitry Comprised of MicroRNA-223 and Transcription Factors NFI-A and C/EBPα Regulates Human Granulopoiesis , 2005, Cell.

[20]  Stuart H. Orkin,et al.  An early haematopoietic defect in mice lacking the transcription factor GATA-2 , 1994, Nature.

[21]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[22]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.

[23]  W. Miller,et al.  Distinguishing regulatory DNA from neutral sites. , 2003, Genome research.

[24]  Meng Ling Choong,et al.  MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. , 2007, Experimental hematology.

[25]  S. Orkin,et al.  A lineage‐selective knockout establishes the critical role of transcription factor GATA‐1 in megakaryocyte growth and platelet development , 1997, The EMBO journal.

[26]  Jing Wu,et al.  GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Mendell,et al.  Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. , 2007, Experimental hematology.

[28]  G. Keller,et al.  Rescue of erythroid development in gene targeted GATA–1− mouse embryonic stem cells , 1992, Nature Genetics.

[29]  Y Fujiwara,et al.  Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Kirby D. Johnson,et al.  Highly Restricted Localization of RNA Polymerase II within a Locus Control Region of a Tissue-Specific Chromatin Domain , 2003, Molecular and Cellular Biology.

[31]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[32]  L. Chodosh,et al.  GATA-1-Mediated Proliferation Arrest during Erythroid Maturation , 2003, Molecular and Cellular Biology.

[33]  V. Ambros,et al.  Role of MicroRNAs in Plant and Animal Development , 2003, Science.

[34]  Eugene Berezikov,et al.  Cloning and expression of new microRNAs from zebrafish , 2006, Nucleic acids research.

[35]  E. Prochownik,et al.  Deregulated expression of c-myc by murine erythroleukaemia cells prevents differentiation , 1986, Nature.

[36]  D. Baltimore,et al.  NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[37]  J. Crispino,et al.  GATA1 in normal and malignant hematopoiesis. , 2005, Seminars in cell & developmental biology.

[38]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[39]  B. Weinstein,et al.  A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[41]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[42]  Francesca Chiaromonte,et al.  Experimental validation of predicted mammalian erythroid cis-regulatory modules. , 2006, Genome research.

[43]  Masayuki Yamamoto,et al.  GATA1 Function, a Paradigm for Transcription Factors in Hematopoiesis , 2005, Molecular and Cellular Biology.

[44]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[45]  J. G. Patton,et al.  Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate , 2007, Nature Genetics.

[46]  S. Nishikawa,et al.  Expression and domain-specific function of GATA-2 during differentiation of the hematopoietic precursor cells in midgestation mouse embryos. , 2003, Blood.

[47]  B. Paw,et al.  Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. , 2005, Blood.

[48]  Francesca Chiaromonte,et al.  Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison. , 2006, Molecular biology and evolution.

[49]  G. McConkey,et al.  Analysis of short RNAs in the malaria parasite and its red blood cell host , 2006, FEBS letters.

[50]  Hao Wang,et al.  Global regulation of erythroid gene expression by transcription factor GATA-1. , 2004, Blood.

[51]  S. Orkin,et al.  Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. , 1997, Blood.

[52]  G. Blobel,et al.  Formation of a Tissue-Specific Histone Acetylation Pattern by the Hematopoietic Transcription Factor GATA-1 , 2003, Molecular and Cellular Biology.

[53]  G. Keller,et al.  Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. , 1994, Genes & development.

[54]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[55]  S. Orkin,et al.  GATA-1 as a Regulator of Mast Cell Differentiation Revealed by the Phenotype of the GATA-1low Mouse Mutant , 2003, The Journal of experimental medicine.