Approximate Recovery in Changepoint Problems, from $\ell_2$ Estimation Error Rates
暂无分享,去创建一个
[1] S. Geer. Estimating a Regression Function , 1990 .
[2] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[3] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[4] S. Geer,et al. Locally adaptive regression splines , 1997 .
[5] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[6] P. Davies,et al. Local Extremes, Runs, Strings and Multiresolution , 2001 .
[7] S. R. Jammalamadaka,et al. Empirical Processes in M-Estimation , 2001 .
[8] M. Talagrand. The Generic chaining : upper and lower bounds of stochastic processes , 2005 .
[9] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[10] Stephan Didas,et al. Splines in Higher Order TV Regularization , 2006, International Journal of Computer Vision.
[11] P. Fryzlewicz. Unbalanced Haar Technique for Nonparametric Function Estimation , 2007 .
[12] A. Rinaldo. Properties and refinements of the fused lasso , 2008, 0805.0234.
[13] L. Duembgen,et al. Multiscale inference about a density , 2007, 0706.3968.
[14] Stephen P. Boyd,et al. 1 Trend Filtering , 2009, SIAM Rev..
[15] Holger Hoefling. A Path Algorithm for the Fused Lasso Signal Approximator , 2009, 0910.0526.
[16] V. Liebscher,et al. Consistencies and rates of convergence of jump-penalized least squares estimators , 2009, 0902.4838.
[17] Z. Harchaoui,et al. Multiple Change-Point Estimation With a Total Variation Penalty , 2010 .
[18] H. Chan,et al. Detection with the scan and the average likelihood ratio , 2011, 1107.4344.
[19] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[20] Junyang Qian,et al. On pattern recovery of the fused Lasso , 2012, 1211.5194.
[21] Alessandro Rinaldo,et al. Sparsistency of the Edge Lasso over Graphs , 2012, AISTATS.
[22] A. Munk,et al. Multiscale change point inference , 2013, 1301.7212.
[23] R. Tibshirani. Adaptive piecewise polynomial estimation via trend filtering , 2013, 1304.2986.
[24] Piotr Fryzlewicz,et al. Wild binary segmentation for multiple change-point detection , 2014, 1411.0858.
[25] B. Wahlberg,et al. Submitted to the Annals of Statistics ON CHANGE POINT DETECTION USING THE FUSED LASSO METHOD ∗ By , 2014 .
[26] A. Dalalyan,et al. On the Prediction Performance of the Lasso , 2014, 1402.1700.
[27] Jan-Christian Hü,et al. Optimal rates for total variation denoising , 2016, COLT.
[28] Yu-Xiang Wang,et al. Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers , 2016, NIPS.
[29] Alexander J. Smola,et al. Trend Filtering on Graphs , 2014, J. Mach. Learn. Res..
[30] P. Fryzlewicz. Tail-greedy bottom-up data decompositions and fast multiple change-point detection , 2018, The Annals of Statistics.