Graphene Electronics: Materials, Devices, and Circuits

Graphene is a 2-D atomic layer of carbon atoms with unique electronic transport properties such as a high Fermi velocity, an outstanding carrier mobility, and a high carrier saturation velocity, which make graphene an excellent candidate for advanced applications in future electronics. In particular, the potential of graphene in high-speed analog electronics is currently being extensively explored. In this paper, we discuss briefly the basic electronic structure and transport properties of graphene, its large scale synthesis, the role of metal-graphene contact, field-effect transistor (FET) device fabrication (including the issues of gate insulators), and then focus on the electrical characteristics and promise of high-frequency graphene transistors with record-high cutoff frequencies, maximum oscillation frequencies, and voltage gain. Finally, we briefly discuss the first graphene integrated circuits (ICs) in the form of mixers and voltage amplifiers.

[1]  Keith A. Jenkins,et al.  Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors , 2010 .

[2]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[3]  V. Wheeler,et al.  Graphene functionalization and seeding for dielectric deposition and device integration , 2012 .

[4]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[5]  K. Balasubramanian,et al.  Polymer-electrolyte gated graphene transistors for analog and digital phase detection , 2011 .

[6]  J. Moon,et al.  Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates , 2009, IEEE Electron Device Letters.

[7]  C. Dimitrakopoulos,et al.  RF performance of short channel graphene field-effect transistor , 2010, 2010 International Electron Devices Meeting.

[8]  C. Keast,et al.  Epitaxial Graphene Transistors on SiC Substrates , 2008, IEEE Transactions on Electron Devices.

[9]  Jaikwang Shin,et al.  RF performance of pre-patterned locally-embedded-back-gate graphene device , 2010, 2010 International Electron Devices Meeting.

[10]  Han Wang,et al.  Graphene electronics for RF applications , 2012, 2011 IEEE MTT-S International Microwave Symposium.

[11]  J. W. McClure,et al.  Band Structure of Graphite and de Haas-van Alphen Effect , 1957 .

[12]  Wenjuan Zhu,et al.  Silicon nitride gate dielectrics and band gap engineering in graphene layers. , 2010, Nano letters.

[13]  Fengnian Xia,et al.  Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. , 2009, Nano letters.

[14]  A. Morpurgo,et al.  Shot noise in ballistic graphene. , 2007, Physical review letters.

[15]  X. Duan,et al.  Scalable fabrication of self-aligned graphene transistors and circuits on glass. , 2012, Nano letters.

[16]  Keith A. Jenkins,et al.  High-frequency performance of graphene field effect transistors with saturating IV-characteristics , 2011, 2011 International Electron Devices Meeting.

[17]  O. Klein,et al.  Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac , 1929 .

[18]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[19]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[20]  Vladimir I. Fal'ko,et al.  Selective transmission of Dirac electrons and ballistic magnetoresistance of n − p junctions in graphene , 2006 .

[21]  Juin J. Liou,et al.  Modern Microwave Transistors: Theory, Design, and Performance , 2002 .

[22]  S. Pei,et al.  Graphene segregated on Ni surfaces and transferred to insulators , 2008, 0804.1778.

[23]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[24]  P. D. Ye,et al.  Top-gated graphene field-effect-transistors formed by decomposition of SiC , 2008, 0802.4103.

[25]  K. A. Jenkins,et al.  Enhanced Performance in Epitaxial Graphene FETs With Optimized Channel Morphology , 2011, IEEE Electron Device Letters.

[26]  H. Kurz,et al.  Current saturation and voltage gain in bilayer graphene field effect transistors. , 2012, Nano letters.

[27]  Hui Li,et al.  Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. , 2011, Nano letters.

[28]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[29]  D. Goldhaber-Gordon,et al.  Transport measurements across a tunable potential barrier in graphene. , 2007, Physical review letters.

[30]  S. Pei,et al.  Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. , 2010, Nature materials.

[31]  Z. Zhong,et al.  Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. , 2010, Nano letters.

[32]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[33]  K. Shepard,et al.  RF performance of top-gated, zero-bandgap graphene field-effect transistors , 2008, 2008 IEEE International Electron Devices Meeting.

[34]  Phaedon Avouris,et al.  Charge trapping and scattering in epitaxial graphene , 2011 .

[35]  M. Fogler,et al.  Nonlinear screening and ballistic transport in a graphene p-n junction. , 2007, Physical review letters.

[36]  J. W. Baldwin,et al.  Bilayer graphene grown on 4H-SiC (0001) step-free mesas. , 2012, Nano letters.

[37]  W. Bao,et al.  Phase-Coherent Transport in Graphene Quantum Billiards , 2007, Science.

[38]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[39]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[40]  Tomás Palacios,et al.  Applications of graphene devices in RF communications , 2010, IEEE Communications Magazine.

[41]  T. Michely,et al.  Structural coherency of graphene on Ir(111). , 2008, Nano letters.

[42]  Francisco Guinea,et al.  Conductance of p-n-p graphene structures with "air-bridge" top gates. , 2008, Nano letters.

[43]  Han Wang,et al.  Graphene-Based Ambipolar RF Mixers , 2010, IEEE Electron Device Letters.

[44]  P. Avouris,et al.  Graphene field-effect transistors with self-aligned gates , 2010 .

[45]  J. Kong,et al.  Compact Virtual-Source Current–Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors , 2011, IEEE Transactions on Electron Devices.

[46]  C. Dimitrakopoulos,et al.  State-of-the-art graphene high-frequency electronics. , 2012, Nano letters.

[47]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[48]  C. N. Lau,et al.  Fabrication of graphene p-n-p junctions with contactless top gates , 2008, 0804.2513.

[49]  T. Taniguchi,et al.  BN/Graphene/BN Transistors for RF Applications , 2011, IEEE Electron Device Letters.

[50]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[51]  P. Kim,et al.  Quantum interference and Klein tunnelling in graphene heterojunctions , 2008, Nature Physics.

[52]  C. Beenakker,et al.  Sub-Poissonian shot noise in graphene. , 2006, Physical review letters.

[53]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[54]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[55]  K. Mohanram,et al.  Graphene Ambipolar Multiplier Phase Detector , 2011, IEEE Electron Device Letters.

[56]  History and physics of the Klein paradox , 1999, quant-ph/9905076.

[57]  K. Novoselov,et al.  Interaction-Driven Spectrum Reconstruction in Bilayer Graphene , 2011, Science.

[58]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[59]  P. Avouris,et al.  Inelastic scattering and current saturation in graphene , 2010, 1003.2455.

[60]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[61]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[62]  Chongwu Zhou,et al.  Self-aligned fabrication of graphene RF transistors with T-shaped gate. , 2012, ACS nano.

[63]  P. Wallace The Band Theory of Graphite , 1947 .

[64]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[65]  P. Asbeck,et al.  Graphene FET-Based Zero-Bias RF to Millimeter-Wave Detection , 2012, IEEE Electron Device Letters.

[66]  P. Khomyakov,et al.  Nonlinear screening of charges induced in graphene by metal contacts , 2009, 0911.2027.

[67]  F. Xia,et al.  Quantum behavior of graphene transistors near the scaling limit. , 2012, Nano letters.

[68]  P M Campbell,et al.  Low-Phase-Noise Graphene FETs in Ambipolar RF Applications , 2011, IEEE Electron Device Letters.

[69]  S. Banerjee,et al.  Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric , 2009, 0901.2901.

[70]  Riichiro Saito,et al.  Berry's Phase and Absence of Back Scattering in Carbon Nanotubes. , 1998 .

[71]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[72]  S. V. Morozov,et al.  Dirac cones reshaped by interaction effects in suspended graphene , 2011 .

[73]  Laura Polloni,et al.  Graphene audio voltage amplifier. , 2012, Small.

[74]  S. Sarma,et al.  Electronic transport in two-dimensional graphene , 2010, 1003.4731.

[75]  Jr.,et al.  Epitaxial Graphene Growth on SiC Wafers , 2009, ECS Transactions.

[76]  W. K. Chan,et al.  Field effect in epitaxial graphene on a silicon carbide substrate , 2007 .

[77]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[78]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[79]  A. Valdes-Garcia,et al.  Record high RF performance for epitaxial graphene transistors , 2011, 2011 International Electron Devices Meeting.

[80]  Osama M. Nayfeh,et al.  Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations , 2006, IBM J. Res. Dev..

[81]  C. Dimitrakopoulos,et al.  100-GHz Transistors from Wafer-Scale Epitaxial Graphene , 2010, Science.

[82]  Wenjuan Zhu,et al.  Three-terminal graphene negative differential resistance devices. , 2012, ACS nano.

[83]  J. Tersoff,et al.  Atomic-scale transport in epitaxial graphene. , 2012, Nature materials.

[84]  K. Yhland,et al.  A Subharmonic Graphene FET Mixer , 2012, IEEE Electron Device Letters.

[85]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[86]  Phaedon Avouris,et al.  Graphene: electronic and photonic properties and devices. , 2010, Nano letters.

[87]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[88]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[89]  V. Hadjiev,et al.  AB-stacked multilayer graphene synthesized via chemical vapor deposition: a characterization by hot carrier transport. , 2012, ACS nano.

[90]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[91]  K. Mohanram,et al.  Triple-mode single-transistor graphene amplifier and its applications. , 2010, ACS nano.

[92]  J. Tersoff,et al.  Structure and electronic transport in graphene wrinkles. , 2012, Nano letters.