Introducing temperature‐compensation in any reaction kinetic oscillator model

Abstract The positive and negative feedback loops in oscillatory reactions provide a basis for obtaining temperature‐compensation in any reaction‐kinetic model of chemical or biological oscillators. The present paper shows that positive and negative feedback reactions play the role of “opposing reactions”; whose existence was suggested by Hastings and Sweeney for more than 30 years ago. The principle is illustrated with the Brusselator model.

[1]  C. Lillo,et al.  Comparative studies of diurnal variations of nitrate reductase activity in wheat, oat and barley , 1984 .

[2]  H. G. Karlsson,et al.  A feedback model for biological rhythms. I. Mathematical description and basic properties of the model. , 1972, Journal of theoretical biology.

[3]  C. Lillo Circadian rhythmicity of nitrate reductase activity in barley leaves , 1984 .

[4]  P. Ruoff,et al.  A minimal model of light‐induced circadian rhythms of nitrate reductase activity in leaves of barley , 1984 .

[5]  Erwin Bünning,et al.  The Physiological Clock , 1964, Heidelberg Science Library.

[6]  T. Pavlidis,et al.  Toward a quantitative biochemical model for circadian oscillators. , 1969, Archives of biochemistry and biophysics.

[7]  Otto-Albrecht Neumüller,et al.  Römpps Chemie-Lexikon , 1972 .

[8]  U. F. Franck Feedback Kinetics in Physicochemical Oscillators , 1980 .

[9]  B. Sweeney Rhythmic Phenomena in Plants , 1987 .

[10]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[11]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[12]  Vorlesungsversuch zur Demonstration eines Falles der Abnahme der Reaktionsgeschwindigkeit mit der Temperatur , 1915 .

[13]  Theodosios Pavlidis,et al.  Biological Oscillators: Their Mathematical Analysis , 1973 .

[14]  J. W. Hastings,et al.  ON THE MECHANISM OF TEMPERATURE INDEPENDENCE IN A BIOLOGICAL CLOCK. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W F Zimmerman,et al.  [A mathematical model for the temperature effects on circadian rhythms]. , 1968, Journal of theoretical biology.

[16]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[17]  A. Winfree The geometry of biological time , 1991 .