A Logical Basis for Quantum Evolution and Entanglement

We reconsider discrete quantum causal dynamics where quantum systems are viewed as discrete structures, namely directed acyclic graphs. In such a graph, events are considered as vertices and edges depict propagation between events. Evolution is described as happening between a special family of spacelike slices, which were referred to as locative slices. Such slices are not so large as to result in acausal influences, but large enough to capture nonlocal correlations.

[1]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[2]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[3]  R. Sorkin,et al.  Spacetime as a Causal Set , 1989 .

[4]  Alwen Tiu,et al.  A Local System for Intuitionistic Logic , 2006, LPAR.

[5]  Kai Brünnler Locality for Classical Logic , 2006, Notre Dame J. Formal Log..

[6]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[7]  Lutz Straßburger,et al.  A Local System for Linear Logic , 2002, LPAR.

[8]  Kai Brünnler,et al.  Deep sequent systems for modal logic , 2009, Arch. Math. Log..

[9]  Alwen Tiu,et al.  A System of Interaction and Structure II: The Need for Deep Inference , 2005, Log. Methods Comput. Sci..

[10]  P. Panangaden,et al.  Discrete Quantum Causal Dynamics , 2001, International Journal of Theoretical Physics.

[11]  S. Abramsky,et al.  Physics from Computer Science , 2007 .

[12]  Alessio Guglielmi,et al.  A system of interaction and structure , 1999, TOCL.

[13]  R. Sorkin Spacetime and causal sets. , 1991 .

[14]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[15]  Christian Retoré,et al.  Pomset Logic: A Non-commutative Extension of Classical Linear Logic , 1997, TLCA.

[16]  Richard Blute,et al.  Linear Logic, Coherence, and Dinaturality , 1993, Theor. Comput. Sci..

[17]  Viktor Schuppan,et al.  Linear Encodings of Bounded LTL Model Checking , 2006, Log. Methods Comput. Sci..

[18]  J. Girard,et al.  Proofs and types , 1989 .

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  Ozan Kahramanogullari System BV is NP-complete , 2008, Ann. Pure Appl. Log..

[21]  J. P. Gray Addresses , 1869, Appetite.

[22]  Samson Abramsky,et al.  Physics from Computer Science: a Position Statement , 2007, Int. J. Unconv. Comput..

[23]  Lutz Straßburger,et al.  Linear logic and noncommutativity in the calculus of structures , 2003 .

[24]  Lutz Straßburger,et al.  A system of interaction and structure IV: The exponentials and decomposition , 2009, TOCL.

[25]  Jean-Yves Girard,et al.  Linear Logic in Computer Science: Between Logic and Quantic: a Tract , 2004 .

[26]  R. Blute,et al.  Natural deduction and coherence for weakly distributive categories , 1996 .

[27]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[28]  Lutz Straßburger,et al.  MELL in the calculus of structures , 2003, Theor. Comput. Sci..

[29]  Taylor Francis Online Communications in algebra , 1974 .

[30]  J. Girard,et al.  Advances in Linear Logic , 1995 .

[31]  Fotini Markopoulou Quantum causal histories , 2000 .

[32]  Prakash Panangaden,et al.  Deep Inference and Probabilistic Coherence Spaces , 2012, Appl. Categorical Struct..

[33]  Nicolas Guenot,et al.  Nested Deduction in Logical Foundations for Computation , 2013 .

[34]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[35]  Lutz Straßburger,et al.  Cut Elimination in Nested Sequents for Intuitionistic Modal Logics , 2013, FoSSaCS.