Metal-Metal Interactions in Trinuclear Copper(II) Complexes [Cu3(RCOO)4(H2TEA)2] and Binuclear [Cu2(RCOO)2(H2TEA)2]. Syntheses and Combined Structural, Magnetic, High-Field Electron Paramagnetic Resonance, and Theoretical Studies.

The trinuclear [Cu3(RCOO)4(H2TEA)2] copper(II) complexes, where RCOO(-) = 2-furoate (1), 2-methoxybenzoate (2), and 3-methoxybenzoate (3, 4), as well as dimeric species [Cu2(H2TEA)2(RCOO)2]·2H2O, have been prepared by adding triethanolamine (H3TEA) at ambient conditions to hydrated Cu(RCOO)2 salts. The newly synthesized complexes have been characterized by elemental analyses, spectroscopic techniques (IR and UV-visible), magnetic susceptibility, single crystal X-ray structure determination and theoretical calculations, using a Difference Dedicated Configuration Interaction approach for the evaluation of magnetic coupling constants. In 1 and 2, the central copper atom lies on an inversion center, while in the polymorphs 3 and 4, the three metal centers are crystallographically independent. The zero-field splitting parameters of the trimeric compounds, D and E, were derived from high-field, high-frequency electron paramagnetic resonance spectra at temperatures ranging from 3 to 290 K and were used for the interpretation of the magnetic data. It was found that the dominant interaction between the terminal and central Cu sites J12 is ferromagnetic in nature in all complexes, even though differences have been found between the symmetrical or quasi-symmetrical complexes 1-3 and non-symmetrical complex 4, while the interaction between the terminal centers, J23, is negligible.

[1]  A. Gubanov,et al.  Two new isomeric copper(II) complexes: Syntheses, spectroscopic characterization, single crystal X-ray structure determination and packing analyses of [Cu(L1/L2)2 (TEMED)], where L1 = 4-chloro-2-nitrobenzoate, L2 = 5-chloro-2-nitrobenzoate and TEMED = N,N,N′,N′-tetramethylethylenediamine , 2015 .

[2]  J. Jezierska,et al.  Role of non-covalent interactions in three copper(II) 5-chloro-2-nitrobenzoate complexes with N-donor ligands: Syntheses, characterization and packing analyses of trans-[Cu(β-pic)2(H2O)2(5-chloro-2-nitrobenzoate)2], trans-[Cu(γ-pic)2(5-chloro-2-nitrobenzoate)2] and [trans-Cu(en)2(H2O)2](5-chloro-2-n , 2015 .

[3]  V. Ferretti,et al.  The role of steric constraints in the formation of rare aqua bridged coordination polymers: Synthesis, characterization and X-ray structures of polymeric, [Cu(2-chlorobenzoate)2(β-picoline)2(μ-H2O)]n and monomeric, [Cu(2-chlorobenzoate)2(γ-picoline)2(H2O)] , 2015 .

[4]  V. Ferretti,et al.  Synthesis, characterization and X-ray structural studies of three hybrid inorganic–organic compounds: Silver(I)-, lead(II)- and tris(phenanthroline)copper(II)- 2,6-naphthalenedisulfonate (2,6-nds) , 2015 .

[5]  V. Ferretti,et al.  Design and construction of two rare aqua bridged copper (II) coordination polymers through mixed ligand strategy: Synthesis, characterization and single crystal X-ray structure determination of [Cu(2-iodobenzoate)2(β/γ-picoline)2(μ-H2O)]n , 2015 .

[6]  Mark D. Smith,et al.  Syntheses, structural, magnetic, and electron paramagnetic resonance studies of monobridged cyanide and azide dinuclear copper(II) complexes: antiferromagnetic superexchange interactions. , 2015, Inorganic chemistry.

[7]  Rajni K. Sharma,et al.  Cation–anion interactions via hydrogen bonding; synthesis, characterization and single crystal X-ray structure of [Cu(phen)3](1,3-benzenedisulphonate)⋅7H2O , 2014 .

[8]  V. Ferretti,et al.  Synthesis, characterization, single crystal structure and DFT calculations of [Cu(temed)(H2O)4](1,5-napthalenedisulphonate)⋅2H2O , 2014 .

[9]  G. Rajaraman,et al.  Probing the origin of magnetic anisotropy in a dinuclear {Mn(III)Cu(II)} single-molecule magnet: the role of exchange anisotropy. , 2014, Chemistry.

[10]  H. Krautscheid,et al.  1,2,4-Triazolyl-carboxylate-based MOFs incorporating triangular Cu(II)-hydroxo clusters: topological metamorphosis and magnetism. , 2014, Inorganic chemistry.

[11]  V. Ferretti,et al.  Isolation of two rare aqua-bridged zigzag copper(II) coordination polymers: Syntheses, characterization and X-ray structures of [Cu(2-bromobenzoate)2(β/γ-picoline)2(μ-H2O)]n , 2014 .

[12]  Mark D. Smith,et al.  Dinuclear metallacycles with single M-O(H)-M bridges [M = Fe(II), Co(II), Ni(II), Cu(II)]: effects of large bridging angles on structure and antiferromagnetic superexchange interactions. , 2014, Inorganic chemistry.

[13]  C. Calzado,et al.  Exchange interactions in [2 × 2] Cu(II) grids: on the reliability of the fitting spin models. , 2014, Dalton transactions.

[14]  C. Calzado,et al.  Magnetic behaviour vs. structural changes in an isomeric series of binuclear copper(II) complexes: an experimental and theoretical study , 2014 .

[15]  Nathalie Guihéry,et al.  Magnetic interactions in molecules and highly correlated materials: physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians. , 2014, Chemical reviews.

[16]  A. Ozarowski,et al.  Influence of nitrogen donor ligands on the coordination modes of copper(II) 2-nitrobenzoate complexes: structures, DFT calculations and magnetic properties , 2014 .

[17]  B. le Guennic,et al.  Do π-π stacking interactions really play a role in the magnetic coupling mechanisms of [Cu2(μ2-CH3COO)2L2(H2O)2]n+ (L = heterocyclic base, n = 0, 2) complexes? An ab initio inspection. , 2013, Inorganic chemistry.

[18]  F. Illas,et al.  Hetero triply-bridged dinuclear copper(II) compounds with ferromagnetic coupling: a challenge for current density functionals. , 2013, Physical chemistry chemical physics : PCCP.

[19]  A. Ozarowski,et al.  Structure and Magnetic Behavior of CuII MOFs Supported by 1,2,4‐Triazolyl‐Bifunctionalized Adamantane Scaffold , 2012 .

[20]  A. Kirillov,et al.  Multicopper complexes and coordination polymers for mild oxidative functionalization of alkanes , 2012 .

[21]  Mark D. Smith,et al.  Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties. , 2012, Inorganic chemistry.

[22]  Mark D. Smith,et al.  Halide and hydroxide linearly bridged bimetallic copper(II) complexes: trends in strong antiferromagnetic superexchange interactions. , 2012, Inorganic chemistry.

[23]  S. García‐Granda,et al.  Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters. , 2012, Inorganic chemistry.

[24]  M. Tegoni,et al.  Metallacrowns of copper(II) and aminohydroxamates: Thermodynamics of self assembly and host-guest equilibria , 2012 .

[25]  F. Illas,et al.  New series of triply bridged dinuclear Cu(II) compounds: synthesis, crystal structure, magnetic properties, and theoretical study. , 2011, Inorganic chemistry.

[26]  V. Psycharis,et al.  Ferromagnetic and antiferromagnetic copper(II) complexes: counterplay between zero-field effects of the quartet ground state and intermolecular interactions. , 2011, Dalton transactions.

[27]  P. Comba,et al.  Cyano-bridged homodinuclear copper(II) complexes. , 2011, Inorganic chemistry.

[28]  F. Neese,et al.  Theoretical determination of the zero-field splitting in copper acetate monohydrate. , 2011, Inorganic chemistry.

[29]  B. le Guennic,et al.  Coexistence of intramolecular ligand-mediated and through hydrogen-bond magnetic interactions in a chain of dicopper(II) units. , 2011, Inorganic chemistry.

[30]  M. Képénekian,et al.  Magnetic and conduction properties in 1D organic radical materials: an ab initio inspection for a challenging quest. , 2011, Physical chemistry chemical physics : PCCP.

[31]  I. Cacelli,et al.  An Integrated Protocol for the Accurate Calculation of Magnetic Interactions in Organic Magnets. , 2011, Journal of chemical theory and computation.

[32]  I. Cacelli,et al.  Singlet-triplet energy gap of a diarylnitroxide diradical by an accurate many-body perturbative approach. , 2011, Physical chemistry chemical physics : PCCP.

[33]  V. Robert,et al.  Beyond Kahn's Model: Substituent and Heteroatom Influence on Exchange Interaction in a Metal-Verdazyl Complex , 2010 .

[34]  R. Boča,et al.  Antisymmetric exchange in polynuclear metal complexes , 2010 .

[35]  F. Neese,et al.  Experimental and theoretical EPR study of Jahn-Teller-active [HIPTN(3)N]MoL complexes (L = N(2), CO, NH(3)). , 2010, Journal of the American Chemical Society.

[36]  O. V. Nesterova,et al.  Cr(III)-Cr(III) interactions in two alkoxo-bridged heterometallic Zn2Cr2 complexes self-assembled from zinc oxide, Reinecke's salt, and diethanolamine. , 2010, Inorganic chemistry.

[37]  V. Robert,et al.  Microscopic origins of the ferromagnetic exchange coupling in oxoverdazyl-based Cu(II) complex. , 2010, The Journal of chemical physics.

[38]  F. Neese,et al.  The resolution of the identity approximation for calculations of spin-spin contribution to zero-field splitting parameters. , 2010, The Journal of chemical physics.

[39]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[40]  M. Valko,et al.  Supramolecular dimer formation through hydrogen bond extensions of carboxylate ligands – Path for magnetic exchange , 2010 .

[41]  F. Illas,et al.  Toward the design of ferromagnetic molecular complexes: magnetostructural correlations in ferromagnetic triply bridged dinuclear Cu(II) compounds containing carboxylato and hydroxo bridges. , 2010, Inorganic chemistry.

[42]  F. Neese,et al.  A multiconfigurational ab initio study of the zero-field splitting in the di- and trivalent hexaquo-chromium complexes. , 2009, Inorganic chemistry.

[43]  W. Plass Structural variety and magnetic properties of polynuclear assemblies based on 2-aminoglucose and tritopic triaminoguanidine ligands , 2009 .

[44]  J. Kao,et al.  Interaction of radical pairs through-bond and through-space: scope and limitations of the point-dipole approximation in electron paramagnetic resonance spectroscopy. , 2009, Journal of the American Chemical Society.

[45]  A. Ozarowski,et al.  High-field EPR and magnetic susceptibility studies on binuclear and tetranuclear copper trifluoroacetate complexes. X-ray structure determination of three tetranuclear quinoline adducts of copper(II) trifluoroacetate. , 2009, Journal of the American Chemical Society.

[46]  A. Vargiu,et al.  Magnetic coupling between copper(II) ions mediated by hydrogen-bonded (neutral) water molecules. , 2009, Inorganic chemistry.

[47]  V. Robert,et al.  Addressing Through-H Magnetic Interactions: A Comprehensive ab Initio Analysis of This Efficient Coupler. , 2009, Journal of chemical theory and computation.

[48]  A. Ozarowski The zero-field-splitting parameter D in binuclear copper(II) carboxylates is negative. , 2008, Inorganic chemistry.

[49]  V. Robert,et al.  Inspection of the duality of a verdazyl-based radical in transition metal complexes: a pi* donor ligand and a magnetic partner. , 2008, Journal of the American Chemical Society.

[50]  C. Calzado,et al.  Role of the electron transfer and magnetic exchange interactions in the magnetic properties of mixed-valence polyoxovanadate complexes. , 2008, Inorganic chemistry.

[51]  Celestino Angeli,et al.  On the applicability of multireference second‐order perturbation theory to study weak magnetic coupling in molecular complexes , 2008, J. Comput. Chem..

[52]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[53]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[54]  S. Youngme,et al.  New ferromagnetic dinuclear triply-bridged copper(II) compounds containing carboxylato bridges: Synthesis, X-ray structure and magnetic properties , 2008 .

[55]  W. Wernsdorfer,et al.  Cubane variations: syntheses, structures, and magnetic property analyses of lanthanide(III)-copper(II) architectures with controlled nuclearities. , 2007, Inorganic chemistry.

[56]  K. Karlin,et al.  Heme-copper/dioxygen adduct formation, properties, and reactivity. , 2007, Accounts of chemical research.

[57]  A. J. Augustine,et al.  O2 and N2O activation by Bi-, Tri-, and tetranuclear Cu clusters in biology. , 2007, Accounts of chemical research.

[58]  D. Hadjipavlou-Litina,et al.  Synthesis and pharmacochemical study of new Cu(II) complexes with thiophen-2-yl saturated and α, β-unsaturated substituted carboxylic acids , 2007 .

[59]  C. O'connor Magnetochemistry—Advances in Theory and Experimentation , 2007 .

[60]  E. Solomon,et al.  Electronic structures of exchange coupled trigonal trimeric Cu(II) complexes: Spin frustration, antisymmetric exchange, pseudo-A terms, and their relation to O2 activation in the multicopper oxidases , 2007 .

[61]  S. Shivashankar,et al.  Synthesis, characterization and investigation of the thermal behaviour of six novel polynuclear cobalt and copper complexes for potential application in MOCVD , 2007 .

[62]  S. García‐Granda,et al.  Coordinative Versatility of Guanazole [3,5‐Diamino‐1,2,4‐triazole]: Synthesis, Crystal Structure, EPR, and Magnetic Properties of a Dinuclear and a Linear Trinuclear Copper(II) Complex Containing Small Bridges and Triazole Ligands , 2006 .

[63]  J. Lehn,et al.  Addressing metal centres in supramolecular assemblies. , 2006, Chemical Society reviews.

[64]  J. Moncol’,et al.  New dimeric copper(II) complex [Cu(5-MeOsal)2(μ-nia)(H2O)]2 with magnetic exchange interactions through H-bonds , 2006 .

[65]  Yi-zhi Li,et al.  Oxidative DNA cleavage promoted by multinuclear copper complexes: activity dependence on the complex structure. , 2006, Chemistry.

[66]  F. Neese Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. , 2006, Journal of the American Chemical Society.

[67]  F. Lloret,et al.  Hydrogen-bond tuning of ferromagnetic interactions: synthesis, structure and magnetic properties of polynuclear copper(II) complexes incorporating p-block oxo-anions. , 2006, Dalton transactions.

[68]  Arvind Kumar,et al.  Synthesis and Characterization of New Mono-, Di-, and Trinuclear Copper(II) Triethanolamine-Carboxylate Complexes , 2005 .

[69]  V. Kravtsov,et al.  A new ferromagnetically coupled μ-alkoxo–μ-acetato copper(II) trinuclear complex: [Cu3(H2tea)(Htea)(CH3COO)2](ClO4) (H3tea = triethanolamine) , 2005 .

[70]  E. Solomon,et al.  O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Mario Ruben,et al.  Grid-type metal ion architectures: functional metallosupramolecular arrays. , 2004, Angewandte Chemie.

[72]  J. Malrieu,et al.  Origin and evaluation of the four-spin operators in magnetic lattices , 2004 .

[73]  Stefano Evangelisti,et al.  Local Orbitals for the Truncation of Inactive Space: Application to Magnetic Systems , 2003 .

[74]  D. Gatteschi,et al.  High frequency EPR of a copper(II) trimer: experiment time scale effects in EPR spectroscopy , 2003 .

[75]  J. Malrieu,et al.  Role of the coordination of the azido bridge in the magnetic coupling of copper(II) binuclear complexes. , 2003, Chemistry.

[76]  J. Malrieu,et al.  Four-spin cyclic exchange in spin ladder cuprates , 2003 .

[77]  Eugenio Coronado,et al.  Electron delocalization in mixed-valence Keggin polyoxometalates. Ab initio calculation of the local effective transfer integrals and its consequences on the spin coupling. , 2002, Journal of the American Chemical Society.

[78]  L. Thompson Polynuclear coordination complexes—from dinuclear to nonanuclear and beyond , 2002 .

[79]  S. Alvarez,et al.  Exchange coupling of transition-metal ions through hydrogen bonding: a theoretical investigation. , 2002, Journal of the American Chemical Society.

[80]  Y. Topcu,et al.  Synthesis, Characterization and Spectral Studies of Triethanolamine Complexes of Metal Saccharinates. Crystal Structures of [Co(TEA)2](SAC)2 AND [Cu2(μ-TEA)2(SAC)2]·2(CH3OH) , 2002 .

[81]  A. Palmer,et al.  Oxygen Binding, Activation, and Reduction to Water by Copper Proteins. , 2001, Angewandte Chemie.

[82]  W. Plass,et al.  Magnetic Interactions as Supramolecular Function: Structure and Magnetic Properties of Hydrogen-Bridged Dinuclear Copper(II) Complexes. , 2001, Angewandte Chemie.

[83]  W. Haase,et al.  High pressure ESR and other complementary studies of copper trimers with the quartet spin ground state , 2001 .

[84]  J. Malrieu,et al.  Ab initio determination of an extended Heisenberg Hamiltonian in CuO2 layers , 2000, cond-mat/0010259.

[85]  J. Malrieu,et al.  Proposal of an extended t-J Hamiltonian for high-Tc cuprates from ab initio calculations on embedded clusters , 2000, cond-mat/0010257.

[86]  J. Malrieu,et al.  Excitation Energy Dedicated Molecular Orbitals. Method and Applications to Magnetic Systems , 2000 .

[87]  J. Cano,et al.  Countercomplementarity and strong ferromagnetic coupling in a linear mixed mu-acetato, mu-hydroxo trinuclear copper(II) complex. Synthesis, structure, magnetic properties, EPR, and theoretical studies. , 2000, Inorganic chemistry.

[88]  J. Malrieu,et al.  Accurate ab initio determination of magnetic interactions and hopping integrals in La2−xSrxCuO4 systems , 2000 .

[89]  Muñoz,et al.  Accurate prediction of large antiferromagnetic interactions in high- T(c) HgBa2Ca(n-1)Cu(n)O(2n+2+delta) ( n = 2,3) superconductor parent compounds , 2000, Physical review letters.

[90]  A. Sienkiewicz,et al.  Ultrawide band multifrequency high-field EMR technique: A methodology for increasing spectroscopic information. , 2000, Journal of magnetic resonance.

[91]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[92]  F. Illas,et al.  Ab initio study of the magnetic interactions in the spin-ladder compound SrCu 2 O 3 , 1999 .

[93]  F. Illas,et al.  Local character of magnetic coupling in ionic solids , 1999 .

[94]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[95]  Nadia Ben Amor,et al.  Size-consistent self-consistent configuration interaction from a complete active space , 1998 .

[96]  S. Alvarez,et al.  Structural Modeling and Magneto-Structural Correlations for Hydroxo-Bridged Copper(II) Binuclear Complexes. , 1997, Inorganic chemistry.

[97]  W. Haase,et al.  Magnetic properties of some molecular compounds containing ferromagnetic copper trimers , 1997 .

[98]  E. Ruiz,et al.  Toward the Prediction of Magnetic Coupling in Molecular Systems: Hydroxo- and Alkoxo-Bridged Cu(II) Binuclear Complexes , 1997 .

[99]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[100]  M. N. Burnett,et al.  ORTEPIII: the Oak Ridge thermal ellipsoid plot program , 1996 .

[101]  D. Davidov,et al.  EPR investigations of trinuclear Cu(II) complexes with quartet ground states , 1996 .

[102]  R. Caballol,et al.  Ab Initio CI Determination of the Exchange Coupling Constant of Doubly-Bridged Nickel(II) Dimers. , 1996, Inorganic chemistry.

[103]  K. Murray The Magnetochemistry of Homo-and Hetero-Tetranuclear First-Row d-Block Complexes , 1995 .

[104]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[105]  F. Illas,et al.  An ab initio cluster model study of the magnetic coupling in KNiF3 , 1994 .

[106]  Y. Moro-oka,et al.  Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives , 1994 .

[107]  J. Ruiz,et al.  Spectroscopic and magnetic properties, and crystal structure of a dimer copper(II) complex via hydrogen bonding with a weak ferromagnetic interaction , 1993 .

[108]  Jean-Paul Malrieu,et al.  Specific CI calculation of energy differences: Transition energies and bond energies , 1993 .

[109]  W. Haase,et al.  Ferromagnetic exchange coupling and magneto-structural correlations in mixed-bridged trinuclear copper(II) complexes. Magnetic data and theoretical investigations and crystal structures of two angled CuII3 complexes , 1993 .

[110]  R. Caballol,et al.  Variational calculation of small energy differences. The singlet-triplet gap in [Cu2Cl6]2− , 1992 .

[111]  L. Seijo,et al.  The abinitio model potential method. Cowan–Griffin relativistic core potentials and valence basis sets from Li (Z = 3) to La (Z = 57) , 1992 .

[112]  J. Malrieu,et al.  Observable-dedicated molecular orbitals. I. Method and illustrations , 1991 .

[113]  M. Julve,et al.  A tetranuclear hydroxo-bridged copper(II) cluster of the cubane type. Preparation and structural and magnetic characterization of tetrakis[(2,2'-bipyridyl)hydroxocopper(II)] hexafluorophosphate , 1990 .

[114]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[115]  M. Allendorf,et al.  Detailed spectral studies of copper acetate: excited-state interactions in copper dimers , 1989 .

[116]  M. Gribnau,et al.  Spin-orbit contribution to the zero-field-splitting tensor in weakly interacting S = 1/2 dimers , 1987 .

[117]  Y. Nishida,et al.  Crystal structures and magnetism of binuclear copper(II) complexes with alkoxide bridges. Importance of orbital complementarity in spin coupling through two different bridging groups , 1986 .

[118]  V. McKee,et al.  Further insight into magnetostructural correlations in binuclear copper(II) species related to methemocyanin: x-ray crystal structure of 1,2-.mu.-nitrito complex , 1985 .

[119]  M. Takeuchi,et al.  ORBITAL COMPLEMENTARY AND COUNTERCOMPLEMENTARY EFFECTS IN SUPEREXCHANGE INTERACTION THROUGH HETEROBRIDGES IN BINUCLEAR COPPER(II) COMPLEXES , 1985 .

[120]  M. Takeuchi,et al.  PREPARATION AND CRYSTAL STRUCTURE OF A BINUCLEAR COPPER(II) COMPLEX BRIDGED BY AN ALKOXO-OXYGEN ATOM AND AN ACETATE ION , 1983 .

[121]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .