A unified closed-loop stability measure for finite-precision digital controller realizations implemented in different representation schemes

A computationally tractable unified finite word length closed-loop stability measure is derived which is applicable to fixed-point, floating-point and block-floating-point representation schemes. Both the dynamic range and precision of an arithmetic scheme are considered in this new unified measure. For each arithmetic scheme, the optimal controller realization problem is defined and a numerical optimization approach is adopted to solve it. Numerical examples are used to illustrate the design procedure and to compare the optimal controller realizations in different representation schemes.

[1]  Bing Lam Luk,et al.  Adaptive simulated annealing for optimization in signal processing applications , 1999, Signal Process..

[2]  Thomas Kailath,et al.  Linear Systems , 1980 .

[3]  Jun Wu,et al.  Reduction of controller fragility by pole sensitivity minimization , 2001, IEEE Trans. Autom. Control..

[4]  Brian D. O. Anderson,et al.  Optimum realizations of sampled-data controllers for FWL sensitivity minimization , 1995, Autom..

[5]  James F. Whidborne,et al.  Finite word length stability issues in an l1 framework , 2000 .

[6]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[7]  Gang Li,et al.  On the structure of digital controllers with finite word length consideration , 1998, IEEE Trans. Autom. Control..

[8]  Shankar P. Bhattacharyya,et al.  Robust, fragile, or optimal? , 1997, IEEE Trans. Autom. Control..

[9]  Tryphon T. Georgiou,et al.  Optimal finite wordlength digital controller realization , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[10]  Jaakko Astola,et al.  Roundoff errors in block-floating-point systems , 1996, IEEE Trans. Signal Process..

[11]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[12]  James. F. Whidborne Optimal Finite-precision Controller and Filter Realizations using Floating-point Arithmetic , .

[13]  M. Gevers,et al.  Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects , 1993 .

[14]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[15]  Tryphon T. Georgiou,et al.  On stability and performance of sampled-data systems subject to wordlength constraint , 1994 .

[16]  Darrell Williamson,et al.  Digital Control and Implementation , 1991 .

[17]  James F. Whidborne,et al.  Digital Controller Implementation and Fragility: A Modern Perspective , 2001 .

[18]  Sheng Chen,et al.  Optimal finite-precision state-estimate feedback controller realizations of discrete-time systems , 2000, IEEE Trans. Autom. Control..

[19]  Peter H. Bauer,et al.  Realization of block floating-point digital filters and application to block implementations , 1999, IEEE Trans. Signal Process..

[20]  Pertti M. Mäkilä,et al.  Fragility and robustness puzzles , 1999 .

[21]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[22]  D. Winfield,et al.  Optimization: Theory and practice , 1972 .

[23]  James F. Whidborne,et al.  Digital Controller Implementation and Fragility , 2001 .

[24]  Sheng Chen,et al.  An improved closed-loop stability related measure for finite-precision digital controller realizations , 2001, IEEE Trans. Autom. Control..

[25]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  Sheng Chen,et al.  Optimizing stability bounds of finite-precision PID controller structures , 1999, IEEE Trans. Autom. Control..