The effect of macrocyclic chelators on the targeting properties of the 68Ga-labeled gastrin releasing peptide receptor antagonist PEG2-RM26.

[1]  J. Reubi,et al.  N-Terminal Modifications Improve the Receptor Affinity and Pharmacokinetics of Radiolabeled Peptidic Gastrin-Releasing Peptide Receptor Antagonists: Examples of 68Ga- and 64Cu-Labeled Peptides for PET Imaging , 2014, The Journal of Nuclear Medicine.

[2]  G. Lindeberg,et al.  The Effect of Mini-PEG-Based Spacer Length on Binding and Pharmacokinetic Properties of a 68Ga-Labeled NOTA-Conjugated Antagonistic Analog of Bombesin , 2014, Molecules.

[3]  J. Reubi,et al.  PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists. , 2014, Nuclear medicine and biology.

[4]  Chris Orvig,et al.  Matching chelators to radiometals for radiopharmaceuticals. , 2014, Chemical Society reviews.

[5]  G. Antoni,et al.  In Vitro and In Vivo Evaluation of a 18F-Labeled High Affinity NOTA Conjugated Bombesin Antagonist as a PET Ligand for GRPR-Targeted Tumor Imaging , 2013, PloS one.

[6]  G. Lindeberg,et al.  Synthesis and characterization of a high-affinity NOTA-conjugated bombesin antagonist for GRPR-targeted tumor imaging. , 2013, Bioconjugate chemistry.

[7]  M. Welch,et al.  Effects of Chelator Modifications on 68Ga-Labeled [Tyr3]Octreotide Conjugates , 2013, Molecular Imaging and Biology.

[8]  F. Forrer,et al.  Bombesin Antagonist–Based Radioligands for Translational Nuclear Imaging of Gastrin-Releasing Peptide Receptor–Positive Tumors , 2011, The Journal of Nuclear Medicine.

[9]  Fan Wang,et al.  Impact of bifunctional chelators on biological properties of 111In-labeled cyclic peptide RGD dimers , 2011, Amino Acids.

[10]  W. Weber,et al.  Novel 64Cu- and 68Ga-Labeled RGD Conjugates Show Improved PET Imaging of ανβ3 Integrin Expression and Facile Radiosynthesis , 2011, The Journal of Nuclear Medicine.

[11]  W. Weber,et al.  PET of Somatostatin Receptor–Positive Tumors Using 64Cu- and 68Ga-Somatostatin Antagonists: The Chelate Makes the Difference , 2011, The Journal of Nuclear Medicine.

[12]  V. Tolmachev,et al.  Influence of labelling methods on biodistribution and imaging properties of radiolabelled peptides for visualisation of molecular therapeutic targets. , 2010, Current medicinal chemistry.

[13]  C. Anderson,et al.  Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. , 2010, Chemical reviews.

[14]  S. Stone-Elander,et al.  Radiolabelled proteins for positron emission tomography: Pros and cons of labelling methods. , 2010, Biochimica et biophysica acta.

[15]  J. Rivier,et al.  Switch from antagonist to agonist after addition of a DOTA chelator to a somatostatin analog , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[16]  S. Kneifel,et al.  Evaluation of a 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid–Conjugated Bombesin-Based Radioantagonist for the Labeling with Single-Photon Emission Computed Tomography, Positron Emission Tomography, and Therapeutic Radionuclides , 2009, Clinical Cancer Research.

[17]  H. Ananias,et al.  Expression of the gastrin‐releasing peptide receptor, the prostate stem cell antigen and the prostate‐specific membrane antigen in lymph node and bone metastases of prostate cancer , 2009, The Prostate.

[18]  S. Achilefu,et al.  Preparation and Biological Evaluation of 64Cu-CB-TE2A-sst2-ANT, a Somatostatin Antagonist for PET Imaging of Somatostatin Receptor–Positive Tumors , 2008, Journal of Nuclear Medicine.

[19]  Anastasia Nikolopoulou,et al.  Bombesin Receptor Antagonists May Be Preferable to Agonists for Tumor Targeting , 2008, Journal of Nuclear Medicine.

[20]  D. W. Price,et al.  Metal complexes of cyclen and cyclam derivatives useful for medical applications: a discussion based on thermodynamic stability constants and structural data. , 2007, Dalton transactions.

[21]  S. Mather,et al.  Targeting prostate cancer with radiolabelled bombesins , 2006, Cancer imaging : the official publication of the International Cancer Imaging Society.

[22]  Judit Erchegyi,et al.  Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors , 2006, Proceedings of the National Academy of Sciences.

[23]  J. Reubi Peptide receptors as molecular targets for cancer diagnosis and therapy. , 2003, Endocrine reviews.

[24]  J. Reubi,et al.  NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. , 2002, Bioconjugate chemistry.

[25]  J C Reubi,et al.  Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. , 1999, The American journal of pathology.

[26]  A. Schally,et al.  Characterization of bombesin/gastrin-releasing peptide receptors in human breast cancer and their relationship to steroid receptor expression. , 1995, Cancer research.

[27]  W R Harris,et al.  Thermodynamic binding constants for gallium transferrin. , 1983, Biochemistry.

[28]  Richard P. Baum,et al.  Theranostics, gallium-68, and other radionuclides : , 2013 .

[29]  F. Forrer,et al.  Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours , 2010, European Journal of Nuclear Medicine and Molecular Imaging.