Topology of Ubiquitin Chains in the Chromatosomal Environment of the E3 Ubiquitin Ligase RNF168

[1]  G. Ghosal,et al.  New answers to the old RIDDLE: RNF168 and the DNA damage response pathway , 2021, The FEBS journal.

[2]  A. Ciechanover,et al.  In-depth characterization of ubiquitin turnover in mammalian cells by fluorescence tracking. , 2021, Cell chemical biology.

[3]  K. Pfleger,et al.  Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs , 2020, Analytica chimica acta: X.

[4]  Jae Jin Kim,et al.  Preserving genome integrity and function: the DNA damage response and histone modifications , 2019, Critical reviews in biochemistry and molecular biology.

[5]  T. Sixma,et al.  Structural basis of specific H2A K13/K15 ubiquitination by RNF168 , 2019, Nature Communications.

[6]  S. Fukai,et al.  Structural insights into two distinct binding modules for Lys63-linked polyubiquitin chains in RNF168 , 2018, Nature Communications.

[7]  Ryotaro Nishi Balancing act: To be, or not to be ubiquitylated. , 2017, Mutation research.

[8]  T. Sixma,et al.  Histone ubiquitination in the DNA damage response. , 2017, DNA repair.

[9]  R. Lavery,et al.  Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. , 2017, Molecular cell.

[10]  T. Sixma,et al.  Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage , 2015, Nature.

[11]  K. Wood,et al.  NanoBRET--A Novel BRET Platform for the Analysis of Protein-Protein Interactions. , 2015, ACS chemical biology.

[12]  A. Ciechanover The unravelling of the ubiquitin system , 2015, Nature Reviews Molecular Cell Biology.

[13]  R. Aebersold,et al.  RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. , 2015, Cell reports.

[14]  T. Sixma,et al.  The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A , 2014, Nature Communications.

[15]  A. D’Andrea,et al.  Chromatin Remodeling at DNA Double-Strand Breaks , 2013, Cell.

[16]  D. Durocher,et al.  Regulation of DNA damage responses by ubiquitin and SUMO. , 2013, Molecular cell.

[17]  B. Neumann,et al.  TRIP12 and UBR5 Suppress Spreading of Chromatin Ubiquitylation at Damaged Chromosomes , 2012, Cell.

[18]  Cheryl H Arrowsmith,et al.  Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. , 2012, Molecular cell.

[19]  Frédérick A. Mallette,et al.  K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites , 2012, Cell Research.

[20]  S. Confalonieri,et al.  UMI, a Novel RNF168 Ubiquitin Binding Domain Involved in the DNA Damage Signaling Pathway , 2010, Molecular and Cellular Biology.

[21]  Christine Yu,et al.  K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. , 2010, Molecular cell.

[22]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[23]  Kazuhiro Iwai,et al.  Linear polyubiquitination: a new regulator of NF‐κB activation , 2009, EMBO reports.

[24]  L. Penengo,et al.  RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX , 2009, BMC Molecular Biology.

[25]  Zhijian J. Chen,et al.  Nonproteolytic functions of ubiquitin in cell signaling. , 2009, Molecular cell.

[26]  K. Khanna,et al.  DNA double-strand breaks: signaling, repair and the cancer connection , 2001, Nature Genetics.

[27]  A. D’Andrea,et al.  Repair Pathway Choices and Consequences at the Double-Strand Break. , 2016, Trends in cell biology.