Electrospinning‐Based Strategies for Battery Materials

Electrospinning is a popular technique to prepare 1D tubular/fibrous nanomaterials that assemble into 2D/3D architectures. When combined with other material processing techniques such as chemical vapor deposition and hydrothermal treatment, electrospinning enables powerful synthesis strategies that can tailor structural and compositional features of energy storage materials. Herein, a simple description is given of the basic electrospinning technique and its combination with other synthetic approaches. Then its employment in the preparation of frameworks and scaffolds with various functions is introduced, e.g., a graphitic tubular network to enhance the electronic conductivity and structural integrity of the electrodes. Current developments in 3D scaffold structures as a host for Li metal anodes, sulfur cathodes, membrane separators, or as a 3D matrix for polymeric solid‐state electrolytes for rechargeable batteries are presented. The use of 1D electrospun nanomaterials as a nanoreactor for in situ transmission electron microscopy (TEM) observations of the mechanisms of materials synthesis and electrochemical reactions is summarized, which has gained popularity due to easy mechanical manipulation, electron transparency, electronic conductivity, and the easy prepositioning of complex chemical ingredients by liquid‐solution processing. Finally, an outlook on industrial production and future challenges for energy storage materials is given.

[1]  Kun Zhang,et al.  Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries , 2020 .

[2]  Hong‐Jie Peng,et al.  Dictating High‐Capacity Lithium–Sulfur Batteries through Redox‐Mediated Lithium Sulfide Growth , 2020, Small Methods.

[3]  Karen E. Thomas-alyea,et al.  The Role of Interlayer Chemistry in Li‐Metal Growth through a Garnet‐Type Solid Electrolyte , 2020, Advanced Energy Materials.

[4]  Rui Zhang,et al.  The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength? , 2020, Advanced Energy Materials.

[5]  Changda Wang,et al.  Dial the Mechanism Switch of VN from Conversion to Intercalation toward Long Cycling Sodium‐Ion Battery , 2020, Advanced Energy Materials.

[6]  Feng Wu,et al.  Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies , 2020 .

[7]  Haoshen Zhou,et al.  Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodium‐Ion Batteries , 2020, Advanced Energy Materials.

[8]  Zijian Zheng,et al.  New Lithium Salt Forms Interphases Suppressing Both Li Dendrite and Polysulfide Shuttling , 2020, Advanced Energy Materials.

[9]  Zhen Chen,et al.  The Role of Cation Vacancies in Electrode Materials for Enhanced Electrochemical Energy Storage: Synthesis, Advanced Characterization, and Fundamentals , 2020, Advanced Energy Materials.

[10]  Feng Li,et al.  An Anion‐Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes , 2020, Advanced Energy Materials.

[11]  G. Ceder,et al.  A High‐Energy NASICON‐Type Cathode Material for Na‐Ion Batteries , 2020, Advanced Energy Materials.

[12]  Yutao Li,et al.  Li metal deposition and stripping in a solid-state battery via Coble creep , 2020, Nature.

[13]  Xian‐Xiang Zeng,et al.  A Flexible Solid Electrolyte with Multilayer Structure for Sodium Metal Batteries , 2020, Advanced Energy Materials.

[14]  Qian Sun,et al.  A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries , 2020, Advanced Energy Materials.

[15]  L. Nazar,et al.  A Lithium Oxythioborosilicate Solid Electrolyte Glass with Superionic Conductivity , 2020, Advanced Energy Materials.

[16]  Wei Lv,et al.  Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries , 2020, Advanced science.

[17]  Xiao-yan Li,et al.  Jackfruit-like electrode design for advanced Na-Se batteries , 2019 .

[18]  Bingbing Chen,et al.  A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature , 2019, Advanced Energy Materials.

[19]  Huakun Liu,et al.  Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate , 2019, Advanced Energy Materials.

[20]  G. Ceder,et al.  High Active Material Loading in All‐Solid‐State Battery Electrode via Particle Size Optimization , 2019, Advanced Energy Materials.

[21]  Yang Hou,et al.  Bioinspired Binders Actively Controlling Ion Migration and Accommodating Volume Change in High Sulfur Loading Lithium–Sulfur Batteries , 2019, Advanced Energy Materials.

[22]  Chun‐Sing Lee,et al.  Ultrahigh Nitrogen Doping of Carbon Nanosheets for High Capacity and Long Cycling Potassium Ion Storage , 2019, Advanced Energy Materials.

[23]  Xianfeng Li,et al.  Affinity Laminated Chromatography Membrane Built‐in Electrodes for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries , 2019, Advanced Energy Materials.

[24]  D. Bresser,et al.  Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries , 2019, Advanced Energy Materials.

[25]  A. Manthiram,et al.  Tailoring the Pore Size of a Polypropylene Separator with a Polymer Having Intrinsic Nanoporosity for Suppressing the Polysulfide Shuttle in Lithium–Sulfur Batteries , 2019, Advanced Energy Materials.

[26]  Lixia Yuan,et al.  Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[27]  Ke-ning Sun,et al.  MoN Supported on Graphene as a Bifunctional Interlayer for Advanced Li‐S Batteries , 2019, Advanced Energy Materials.

[28]  Xingxiang Zhang,et al.  Free-standing dual-network red phosphorus@porous multichannel carbon nanofibers/carbon nanotubes as a stable anode for lithium-ion batteries , 2019, Electrochimica Acta.

[29]  Renming Zhan,et al.  (001) Facet Dominated Hierarchically Hollow Na2Ti3O7 as a High-Rate Anode Materials for Sodium-Ion Capacitors. , 2019, ACS applied materials & interfaces.

[30]  Mao-wen Xu,et al.  Design and Construction of Sodium Polysulfides Defense System for Room‐Temperature Na–S Battery , 2019, Advanced science.

[31]  B. Liu,et al.  Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase , 2019, Advanced Energy Materials.

[32]  Yiying Wu,et al.  Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries , 2019, Advanced Energy Materials.

[33]  Rui Zhang,et al.  A Coaxial‐Interweaved Hybrid Lithium Metal Anode for Long‐Lifespan Lithium Metal Batteries , 2019, Advanced Energy Materials.

[34]  Z. Tian,et al.  Synthesis and Operando Sodiation Mechanistic Study of Nitrogen‐Doped Porous Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode , 2019, Advanced Energy Materials.

[35]  Zhongfan Liu,et al.  Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications , 2019, Advanced Functional Materials.

[36]  B. Cheng,et al.  A Review: Electrospun Nanofiber Materials for Lithium‐Sulfur Batteries , 2019, Advanced Functional Materials.

[37]  Huabin Yang,et al.  Polymer Binders Constructed via Dynamic Non-covalent Bonds for High-capacity Silicon-based Anodes. , 2019, Chemistry.

[38]  Yan Yu,et al.  Boosting Sodium Storage in TiF3/Carbon Core/Sheath Nanofibers through an Efficient Mixed‐Conducting Network , 2019, Advanced Energy Materials.

[39]  Y. Hashimoto,et al.  Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection , 2019, Scientific Reports.

[40]  Xiao-yan Li,et al.  Double-walled N-doped carbon@NiCo2S4 hollow capsules as SeS2 hosts for advanced Li–SeS2 batteries , 2019, Journal of Materials Chemistry A.

[41]  J. Goodenough,et al.  Fiber-in-Tube Design of Co9 S8 -Carbon/Co9 S8 : Enabling Efficient Sodium Storage. , 2019, Angewandte Chemie.

[42]  S. Yao,et al.  Three-dimension ivy-structured MoS2 nanoflakes-embedded nitrogen doped carbon nanofibers composite membrane as free-standing electrodes for Li/polysulfides batteries , 2019, Electrochimica Acta.

[43]  Kunyue Teng,et al.  Controllable nitrogen doping and specific surface from freestanding TiO2@carbon nanofibers as anodes for lithium ion battery , 2019, Electrochimica Acta.

[44]  Feng Wu,et al.  Carbon Nanofiber Elastically Confined Nanoflowers: A Highly Efficient Design for Molybdenum Disulfide-Based Flexible Anodes Toward Fast Sodium Storage. , 2019, ACS applied materials & interfaces.

[45]  Jun Lu,et al.  Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery , 2019, Nature Communications.

[46]  Stefano Passerini,et al.  Single‐Ion Conducting Electrolyte Based on Electrospun Nanofibers for High‐Performance Lithium Batteries , 2019, Advanced Energy Materials.

[47]  Xin-bo Zhang,et al.  N‐Doped C@Zn3B2O6 as a Low Cost and Environmentally Friendly Anode Material for Na‐Ion Batteries: High Performance and New Reaction Mechanism , 2018, Advanced materials.

[48]  Lin Zhu,et al.  Alkyl phosphate modified graphene oxide as friction and wear reduction additives in oil , 2018, Journal of Materials Science.

[49]  B. Cheng,et al.  A novel hot-pressed electrospun polyimide separator for lithium-sulfur batteries , 2018, Materials letters (General ed.).

[50]  N. Zheng,et al.  Fiber network composed of interconnected yolk-shell carbon nanospheres for high-performance lithium-sulfur batteries , 2018, Nano Energy.

[51]  Wenbin Hu,et al.  Recent Advances in Flexible Zinc‐Based Rechargeable Batteries , 2018, Advanced Energy Materials.

[52]  Chang Ming Li,et al.  Chinese knot-like electrode design for advanced Li-S batteries , 2018, Nano Energy.

[53]  Feng Wu,et al.  3D Electronic Channels Wrapped Large-Sized Na3 V2 (PO4 )3 as Flexible Electrode for Sodium-Ion Batteries. , 2018, Small.

[54]  Chaoyi Yan,et al.  A Nonflammable and Thermotolerant Separator Suppresses Polysulfide Dissolution for Safe and Long‐Cycle Lithium‐Sulfur Batteries , 2018, Advanced Energy Materials.

[55]  Byoung-Sun Lee,et al.  Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications , 2018, Advanced materials.

[56]  C. Schauer,et al.  Effect of electrospinning processing variables on polyacrylonitrile nanoyarns , 2018 .

[57]  Yang Shen,et al.  Lithium-Salt-Rich PEO/Li0.3La0.557TiO3 Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. , 2018, ACS applied materials & interfaces.

[58]  S. Dou,et al.  Co9S8@carbon nanospheres as high-performance anodes for sodium ion battery , 2018, Chemical Engineering Journal.

[59]  M. Pumera,et al.  The chemistry of CVD graphene , 2018 .

[60]  Chenglong Zhao,et al.  Solid‐State Sodium Batteries , 2018 .

[61]  Chunsheng Wang,et al.  Progress in Aqueous Rechargeable Sodium‐Ion Batteries , 2018 .

[62]  Linyu Hu,et al.  Double‐Shelled NiO‐NiCo2O4 Heterostructure@Carbon Hollow Nanocages as an Efficient Sulfur Host for Advanced Lithium–Sulfur Batteries , 2018, Advanced Energy Materials.

[63]  Shining Zhu,et al.  Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination , 2018 .

[64]  Hui Xu,et al.  Developing High‐Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress , 2018, Advanced materials.

[65]  Steven D. Lacey,et al.  Carbothermal shock synthesis of high-entropy-alloy nanoparticles , 2018, Science.

[66]  B. Cheng,et al.  CeF3-Doped Porous Carbon Nanofibers as Sulfur Immobilizers in Cathode Material for High-Performance Lithium-Sulfur Batteries. , 2018, ACS applied materials & interfaces.

[67]  Wenpei Kang,et al.  A yolk–shelled Co9S8/MoS2–CN nanocomposite derived from a metal–organic framework as a high performance anode for sodium ion batteries , 2018 .

[68]  Lele Peng,et al.  Holey 2D Nanomaterials for Electrochemical Energy Storage , 2018 .

[69]  Liumin Suo,et al.  Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries , 2018, Proceedings of the National Academy of Sciences.

[70]  Gang Chen,et al.  Co9 S8 /Co as a High-Performance Anode for Sodium-Ion Batteries with an Ether-Based Electrolyte. , 2017, ChemSusChem.

[71]  Dongliang Chao,et al.  Nonaqueous Hybrid Lithium‐Ion and Sodium‐Ion Capacitors , 2017, Advanced materials.

[72]  Jingwei Xiang,et al.  A Strategy of Selective and Dendrite-Free Lithium Deposition for Lithium Batteries , 2017 .

[73]  G. Henkelman,et al.  A highly efficient double-hierarchical sulfur host for advanced lithium–sulfur batteries† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03960c , 2017, Chemical science.

[74]  Ting Liu,et al.  Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries , 2017 .

[75]  Zhiwei Xu,et al.  A review on manifold synthetic and reprocessing methods of 3D porous graphene-based architecture for Li-ion anode , 2017 .

[76]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[77]  Yonggang Yao,et al.  Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode , 2017, Advanced materials.

[78]  Zhisong Lu,et al.  One-step Solvothermal Synthesis of Two-dimensional Ultrathin Na3[Ti2P2O10F] Nanosheets for Lithium/Sodium Storage , 2017 .

[79]  Yongchang Liu,et al.  Electrospun NaVPO4F/C Nanofibers as Self‐Standing Cathode Material for Ultralong Cycle Life Na‐Ion Batteries , 2017 .

[80]  Z. Ren,et al.  A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries , 2017 .

[81]  M. Burman,et al.  Estimating the Degree of Polymer Stretching during Electrospinning: An Experimental Imitation Method , 2017 .

[82]  Chaoyi Yan,et al.  A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries , 2017 .

[83]  Haihui Wang,et al.  Free-standing sulfur host based on titanium-dioxide-modified porous-carbon nanofibers for lithium-sulfur batteries , 2017 .

[84]  Zhiwei Xu,et al.  Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries , 2017 .

[85]  Wei Lu,et al.  Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite , 2017 .

[86]  Jian Jiang,et al.  Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries , 2017 .

[87]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[88]  Steven D. Lacey,et al.  Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface , 2017, Science Advances.

[89]  Y. Liu,et al.  Recent development of centrifugal electrospinning , 2017 .

[90]  Jianming Zheng,et al.  Electrolyte additive enabled fast charging and stable cycling lithium metal batteries , 2017, Nature Energy.

[91]  A. Manthiram,et al.  Sulfur‐Embedded Activated Multichannel Carbon Nanofiber Composites for Long‐Life, High‐Rate Lithium–Sulfur Batteries , 2017 .

[92]  Huajian Gao,et al.  A Catalytic Etching-Wetting-Dewetting Mechanism in the Formation of Hollow Graphitic Carbon Fiber , 2017 .

[93]  Xiao-yan Li,et al.  Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage , 2017 .

[94]  Julia L. Shamshina,et al.  "Practical" Electrospinning of Biopolymers in Ionic Liquids. , 2017, ChemSusChem.

[95]  J. Goodenough,et al.  Hollow Nanotubes of N-Doped Carbon on CoS. , 2016, Angewandte Chemie.

[96]  Xi Chen,et al.  Mastering the interface for advanced all-solid-state lithium rechargeable batteries , 2016, Proceedings of the National Academy of Sciences.

[97]  Weimin Kang,et al.  A review on separators for lithiumsulfur battery: Progress and prospects , 2016 .

[98]  Xiao-yan Li,et al.  Stable freestanding Li-ion battery cathodes by in situ conformal coating of conducting polypyrrole on NiS-carbon nanofiber films , 2016 .

[99]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[100]  Y. Mai,et al.  Electrospun carbon-based nanostructured electrodes for advanced energy storage - a review , 2016 .

[101]  P. Bradford,et al.  Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium–sulfur batteries: an experimental and molecular modeling study , 2016 .

[102]  Qi Li,et al.  Chloride‐Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium–Sulfur Batteries , 2016, Advanced science.

[103]  X. Lou,et al.  Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries , 2016, Science Advances.

[104]  Yibo Wang,et al.  Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries , 2016, Proceedings of the National Academy of Sciences.

[105]  Jian Yang,et al.  Double‐Walled Sb@TiO2−x Nanotubes as a Superior High‐Rate and Ultralong‐Lifespan Anode Material for Na‐Ion and Li‐Ion Batteries , 2016, Advanced materials.

[106]  X. Lou,et al.  Hierarchical Tubular Structures Composed of Co3 O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. , 2016, Angewandte Chemie.

[107]  A. Hotta,et al.  Syndiotactic polypropylene nanofibers obtained from solution electrospinning process at ambient temperature , 2016 .

[108]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[109]  Quazi Nahida Sultana,et al.  Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption , 2016, Journal of Materials Engineering and Performance.

[110]  X. Lou,et al.  Pie-like electrode design for high-energy density lithium–sulfur batteries , 2015, Nature Communications.

[111]  W. Qin,et al.  Graphene/Co9S8 nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries , 2015 .

[112]  Jianming Zheng,et al.  Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges , 2015 .

[113]  X. Lou,et al.  General Formation of M(x)Co(3-x)S4 (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors. , 2015, Angewandte Chemie.

[114]  Yan Yu,et al.  Flexible copper-stabilized sulfur-carbon nanofibers with excellent electrochemical performance for Li-S batteries. , 2015, Nanoscale.

[115]  Feng Wu,et al.  A hierarchical carbon fiber/sulfur composite as cathode material for Li–S batteries , 2015 .

[116]  Yunhui Huang,et al.  Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries , 2015, Scientific Reports.

[117]  Wei Liu,et al.  Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. , 2015, Nano letters.

[118]  Hong‐Jie Peng,et al.  Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. , 2015, ACS nano.

[119]  Limin Zhou,et al.  Recycled diesel carbon nanoparticles for nanostructured battery anodes , 2015 .

[120]  H. Pan,et al.  Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries , 2014 .

[121]  Y. Mai,et al.  Hollow-tunneled graphitic carbon nanofibers through Ni-diffusion-induced graphitization as high-performance anode materials , 2014 .

[122]  S. Ramakrishna,et al.  Melt electrospinning in a parallel electric field , 2014, Melt Electrospinning.

[123]  Feng Ding,et al.  Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts , 2014, Nature.

[124]  Junhong Chen,et al.  Facile one-pot, one-step synthesis of a carbon nanoarchitecture for an advanced multifunctonal electrocatalyst. , 2014, Angewandte Chemie.

[125]  J. Goodenough,et al.  Sulfur encapsulated in porous hollow CNTs@CNFs for high-performance lithium–sulfur batteries , 2014 .

[126]  Jianxin He,et al.  Double-nozzle air-jet electrospinning for nanofiber fabrication , 2014 .

[127]  Bin Sun,et al.  Recent advances in flexible and stretchable electronic devices via electrospinning , 2014 .

[128]  Haitao Huang,et al.  Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[129]  Yu‐Guo Guo,et al.  Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. , 2013, Small.

[130]  Alexander Eychmüller,et al.  A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life , 2013, Advanced materials.

[131]  Dario Pisignano,et al.  Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review , 2013 .

[132]  Jian Yu Huang,et al.  Nanowire liquid pumps. , 2013, Nature nanotechnology.

[133]  Haoshen Zhou,et al.  Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device , 2013, Nature Communications.

[134]  S. Mazinani,et al.  Manufacturing polymethyl methacrylate nanofibers as a support for enzyme immobilization , 2012, Fibers and Polymers.

[135]  Y. Mai,et al.  In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. , 2012, Nanoscale.

[136]  Xueping Gao,et al.  A Polyaniline‐Coated Sulfur/Carbon Composite with an Enhanced High‐Rate Capability as a Cathode Material for Lithium/Sulfur Batteries , 2012 .

[137]  Meng Gu,et al.  In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. , 2012, ACS nano.

[138]  A. Gnanamani,et al.  Electrospinning of type I collagen and PCL nanofibers using acetic acid , 2012 .

[139]  Young Hee Lee,et al.  Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. , 2012, ACS nano.

[140]  F. Ducastelle,et al.  Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth. , 2012, Physical review letters.

[141]  Li Min Zhou,et al.  Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries , 2012 .

[142]  B. Yakobson,et al.  Efficient defect healing in catalytic carbon nanotube growth. , 2012, Physical review letters.

[143]  Feiyu Kang,et al.  Carbon Nanofibers Prepared via Electrospinning , 2012, Advanced materials.

[144]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[145]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[146]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[147]  G. Cui,et al.  One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage , 2011 .

[148]  Ji‐Guang Zhang,et al.  In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO₂ nanowire during lithium intercalation. , 2011, Nano letters.

[149]  Harold G. Craighead,et al.  Applications of controlled electrospinning systems , 2011 .

[150]  A. Yarin Coaxial electrospinning and emulsion electrospinning of core–shell fibers , 2011 .

[151]  S. Agarwal,et al.  On the way to clean and safe electrospinning—green electrospinning: emulsion and suspension electrospinning , 2011 .

[152]  Tong Lin,et al.  Evolution of fiber morphology during electrospinning , 2010 .

[153]  A. Varesano,et al.  Multi-jet nozzle electrospinning on textile substrates: observations on process and nanofibre mat deposition , 2010 .

[154]  Y. Cohen,et al.  Carbonization of electrospun poly(acrylonitrile) nanofibers containing multiwalled carbon nanotubes observed by transmission electron microscope with in situ heating , 2010 .

[155]  Jun Liu,et al.  In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities , 2010 .

[156]  Yuan Xue,et al.  Influence of electric field interference on double nozzles electrospinning , 2010 .

[157]  Yiu-Wing Mai,et al.  Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties , 2010 .

[158]  Muzafar A. Kanjwal,et al.  Photocatalytic activity of ZnO-TiO2 hierarchical nanostructure prepared by combined electrospinning and hydrothermal techniques , 2010 .

[159]  P. Westbroek,et al.  Solvent system for steady state electrospinning of polyamide 6.6 , 2010 .

[160]  Yuming Chen,et al.  LaOCl nanofibers derived from electrospun PVA/Lanthanum chloride composite fibers , 2010 .

[161]  Yen Wei,et al.  One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. , 2009, Small.

[162]  E. Xie,et al.  SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates , 2009 .

[163]  M. Nouri,et al.  Effects of some electrospinning parameters on morphology of Natural silk-based nanofibers , 2009 .

[164]  Seung Jae Yang,et al.  Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite , 2009 .

[165]  K. Hata,et al.  Existence and kinetics of graphitic carbonaceous impurities in carbon nanotube forests to assess the absolute purity. , 2009, Nano letters.

[166]  Joachim Kohn,et al.  Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. , 2008, International journal of pharmaceutics.

[167]  F. Besenbacher,et al.  Electrospinning of uniform polystyrene fibers : The effect of solvent conductivity , 2008 .

[168]  Darrell H. Reneker,et al.  Electrospinning jets and polymer nanofibers , 2008 .

[169]  R. Antón On the reaction kinetics of Ni with amorphous carbon , 2008 .

[170]  Ahmad Fauzi Ismail,et al.  A review of heat treatment on polyacrylonitrile fiber , 2007 .

[171]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[172]  A. K. Haghi,et al.  Trends in electrospinning of natural nanofibers , 2007 .

[173]  Ji-Huan He,et al.  Electrospinning of high‐molecule PEO solution , 2007 .

[174]  X. Qin,et al.  Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution , 2007 .

[175]  X. Qin,et al.  Filtration properties of electrospinning nanofibers , 2006 .

[176]  Satish Kumar,et al.  Electrospinning of polyacrylonitrile nanofibers , 2006 .

[177]  Andreas Greiner,et al.  Electrospinning approaches toward scaffold engineering--a brief overview. , 2006, Artificial organs.

[178]  Antje J. Baeumner,et al.  Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies , 2006 .

[179]  Kun Gao,et al.  Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells , 2006 .

[180]  Sihui Zhan,et al.  Long TiO2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties. , 2006, The journal of physical chemistry. B.

[181]  R. Hicks,et al.  Atmospheric Plasma Deposition of Coatings Using a Capacitive Discharge Source , 2005 .

[182]  Yong Huang,et al.  Effect of solvent on morphology of electrospinning ethyl cellulose fibers , 2005 .

[183]  Gary E. Wnek,et al.  Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit , 2005 .

[184]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[185]  P. Supaphol,et al.  Titanium (IV) oxide nanofibers by combined sol–gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant , 2005 .

[186]  C. Berkland,et al.  Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(D,L-lactide-co-glycolide). , 2004, Biomaterials.

[187]  Ce Wang,et al.  Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning , 2004 .

[188]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[189]  S. Shivkumar,et al.  N,N-Dimethylformamide Additions to the Solution for the Electrospinning of Poly(ε-caprolactone) Nanofibers , 2004 .

[190]  Timothy E. Long,et al.  Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters , 2004 .

[191]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[192]  Darrell H. Reneker,et al.  Carbon Nanotubes on Carbon Nanofibers: A Novel Structure Based on Electrospun Polymer Nanofibers , 2004 .

[193]  Yong Huang,et al.  Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions , 2004 .

[194]  J. Wendorff,et al.  Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology , 2003 .

[195]  Michael P Brenner,et al.  Controlling the fiber diameter during electrospinning. , 2003, Physical review letters.

[196]  A. Barrero,et al.  A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. , 2003, Journal of the American Chemical Society.

[197]  D. Qian,et al.  In‐situ transmission electron microscopy studies of polymer–carbon nanotube composite deformation , 2001, Journal of microscopy.

[198]  M. Brenner,et al.  Electrospinning and electrically forced jets. I. Stability theory , 2001 .

[199]  Michael P. Brenner,et al.  Electrospinning: A whipping fluid jet generates submicron polymer fibers , 2001 .

[200]  Zhong Lin Wang,et al.  Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM , 2000 .

[201]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[202]  U. Jansson Ultra-high vacuum CVD of W and WSi2 films by Si reduction of WF6 , 1993 .

[203]  D. J. Johnson Structure-property relationships in carbon fibres , 1987 .

[204]  David B. Graves,et al.  Modeling and Analysis of Low Pressure CVD Reactors , 1983 .

[205]  Geoffrey Ingram Taylor,et al.  Electrically driven jets , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[206]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[207]  X. Tao,et al.  Lithium Batteries: Unraveling the Intra and Intercycle Interfacial Evolution of Li 6 PS 5 Cl‐Based All‐Solid‐State Lithium Batteries (Adv. Energy Mater. 4/2020) , 2020 .

[208]  Ce Wang,et al.  Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance , 2017 .

[209]  Jianmin Ma,et al.  Electrospun MoO2@NC nanofibers with excellent Li+/Na+ storage for dual applications , 2017, Science China Materials.

[210]  X. Qin,et al.  In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes with Exceptional High‐Rate Performance , 2017 .

[211]  Y. Mai,et al.  Inserting Sn Nanoparticles into the Pores of TiO2−x–C Nanofibers by Lithiation , 2016 .

[212]  A. Minor,et al.  Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane , 2015 .

[213]  Nancy G. Tassi,et al.  Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process , 2004 .