Nearly convex sets: fine properties and domains or ranges of subdifferentials of convex functions

Nearly convex sets play important roles in convex analysis, optimization and theory of monotone operators. We give a systematic study of nearly convex sets, and construct examples of subdifferentials of lower semicontinuous convex functions whose domains or ranges are nonconvex.

[1]  Heinz H. Bauschke,et al.  The Resolvent Average of Monotone Operators: Dominant and Recessive Properties , 2015, SIAM J. Optim..

[2]  Heinz H. Bauschke,et al.  Near equality, near convexity, sums of maximally monotone operators, and averages of firmly nonexpansive mappings , 2011, Math. Program..

[3]  Radu Ioan Bot,et al.  Duality for almost convex optimization problems via the perturbation approach , 2008, J. Glob. Optim..

[5]  J. B. G. Frenk,et al.  Lagrangian Duality and Cone Convexlike Functions , 2005 .

[6]  Heinz H. Bauschke,et al.  Firmly Nonexpansive Mappings and Maximally Monotone Operators: Correspondence and Duality , 2011, 1101.4688.

[7]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[8]  Sorin-Mihai Grad,et al.  Almost Convex Functions: Conjugacy and Duality , 2007 .

[9]  R. Rockafellar On the virtual convexity of the domain and range of a nonlinear maximal monotone operator , 1970 .

[10]  Karolin Papst,et al.  Techniques Of Variational Analysis , 2016 .

[11]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[12]  Sorin-Mihai Grad,et al.  Fenchel’s Duality Theorem for Nearly Convex Functions , 2007 .

[13]  Heinz H. Bauschke,et al.  Rectangularity and paramonotonicity of maximally monotone operators , 2012, 1201.4220.

[14]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[15]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[16]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[17]  Reinhard John,et al.  Uses of Generalized Convexity and Generalized Monotonicity in Economics , 2005 .

[18]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[19]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[20]  M. Fabian,et al.  Functional Analysis and Infinite-Dimensional Geometry , 2001 .

[21]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[22]  Heinz H. Bauschke,et al.  Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative , 2007 .

[23]  Siegfried Schaible,et al.  Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .

[24]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[25]  Heinz H. Bauschke,et al.  Fitzpatrick Functions and Continuous Linear Monotone Operators , 2007, SIAM J. Optim..

[26]  H. Brezis,et al.  Image d’une somme d’operateurs monotones et applications , 1976 .

[27]  Juan Enrique Martínez-Legaz,et al.  Generalized Convex Duality and its Economic Applicatons , 2005 .

[28]  G. Minty On the maximal domain of a ``monotone'' function. , 1961 .

[29]  E. Beckenbach CONVEX FUNCTIONS , 2007 .