Weak mixing for interval exchange transformations and translation flows

We prove that a typical interval exchange transformation is either weakly mixing or it is an irrational rotation. We also conclude that a typical translation flow on a typical translation surface of genus g ≥ 2 (with prescribed singularity types) is weakly mixing.

[1]  E. Gutkin,et al.  The Geometry and Arithmetic of Translation Surfaces with Applications to Polygonal Billiards , 1996 .

[2]  LYAPUNOV EXPONENTS AND HODGE THEORY , 1997, hep-th/9701164.

[3]  A. Katok,et al.  Weakly mixing billiards , 1988 .

[4]  D. Rudolph,et al.  Topological weak-mixing of interval exchange maps , 1997, Ergodic Theory and Dynamical Systems.

[5]  Stefano Marmi,et al.  Hölder Regularity of the Solutions of the Cohomological Equation for Roth Type Interval Exchange Maps , 2004, 1407.1776.

[6]  C. Caramanis What is ergodic theory , 1963 .

[7]  Anton Zorich,et al.  Deviation for interval exchange transformations , 1997, Ergodic Theory and Dynamical Systems.

[8]  Anton Zorich,et al.  Finite Gauss measure on the space of interval exchange transformations , 1996 .

[9]  W. Veech Projective Swiss Cheeses and Uniquely Ergodic Interval Exchange Transformations , 1981 .

[10]  W. Veech,et al.  Moduli spaces of quadratic differentials , 1990 .

[11]  W. Veech THE METRIC THEORY OF INTERVAL EXCHANGE TRANSFORMATIONS I. GENERIC SPECTRAL PROPERTIES , 1984 .

[12]  H. Masur Interval Exchange Transformations and Measured Foliations , 1982 .

[13]  A. Katok Interval exchange transformations and some special flows are not mixing , 1980 .

[14]  E. Gutkin,et al.  Affine mappings of translation surfaces: geometry and arithmetic , 2000 .

[15]  W. Veech The Teichmuller Geodesic Flow , 1986 .

[16]  W. Veech Gauss measures for transformations on the space of interval exchange maps , 1982 .

[17]  Giovanni Forni Deviation of ergodic averages for area-preserving flows on surfaces of higher genus , 2002 .

[18]  A. Katok,et al.  APPROXIMATIONS IN ERGODIC THEORY , 1967 .

[19]  Artur Avila,et al.  Exponential mixing for the Teichmüller flow , 2005 .

[20]  Steven P. Kerckhoff,et al.  Ergodicity of billiard flows and quadratic differentials , 1986 .

[21]  I. Lucien Mélange faible topologique des flots sur les surfaces , 1997, Ergodic Theory and Dynamical Systems.

[22]  Marcelo Viana,et al.  Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture , 2005, math/0508508.

[23]  Gérard Rauzy,et al.  Échanges d'intervalles et transformations induites , 1979 .