Glia: listening and talking to the synapse

Glial cells are emerging from the background to become more prominent in our thinking about integration in the nervous system. Given that glial cells associated with synapses integrate neuronal inputs and can release transmitters that modulate synaptic activity, it is time to rethink our understanding of the wiring diagram of the nervous system. It is no longer appropriate to consider solely neuron–neuron connections; we also need to develop a view of the intricate web of active connections among glial cells, and between glia and neurons. Without such a view, it might be impossible to decode the language of the brain.

[1]  S. W. Kuffler,et al.  Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. , 1966, Journal of neurophysiology.

[2]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[3]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[4]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[5]  S. Finkbeiner,et al.  Ca2+ waves in astrocytes. , 1991, Cell calcium.

[6]  A. Charles,et al.  Intercellular signaling in glial cells: Calcium waves and oscillations in response to mechanical stimulation and glutamate , 1991, Neuron.

[7]  Acknowledgements , 1992, Experimental Gerontology.

[8]  M. Charlton,et al.  Transmitter release increases intracellular calcium in perisynaptic schwann cells in situ , 1992, Neuron.

[9]  M. Sanderson,et al.  Intercellular calcium signaling via gap junctions in glioma cells , 1992, The Journal of cell biology.

[10]  S. J. Smith,et al.  Do astrocytes process neural information? , 1992, Progress in brain research.

[11]  S. Finkbeiner Calcium waves in astrocytes-filling in the gaps , 1992, Neuron.

[12]  K. McCarthy,et al.  Activation of Protein Kinase C Blocks Astroglial Gap Junction Communication and Inhibits the Spread of Calcium Waves , 1992, Journal of neurochemistry.

[13]  Stephen J. Smith,et al.  Neuronal activity triggers calcium waves in hippocampal astrocyte networks , 1992, Neuron.

[14]  S. J. Smith,et al.  Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Jahn,et al.  Tetanus and botulinal neurotoxins. Tools to understand exocytosis in neurons. , 1994, Advances in second messenger and phosphoprotein research.

[16]  Fang Liu,et al.  Glutamate-mediated astrocyte–neuron signalling , 1994, Nature.

[17]  J. Sneyd,et al.  A model for the propagation of intercellular calcium waves. , 1994, The American journal of physiology.

[18]  D. Attwell Glia and neurons in dialogue , 1994, Nature.

[19]  R. Jahn,et al.  Clostridial neurotoxins: new tools for dissecting exocytosis. , 1994, Trends in cell biology.

[20]  A. Charles,et al.  Glia-neuron intercellular calcium signaling. , 1994, Developmental neuroscience.

[21]  K. McCarthy,et al.  Astroglial Gap Junction Communication Is Increased by Treatment with Either Glutamate or High K+ Concentration , 1994, Journal of neurochemistry.

[22]  Stephen J. Smith Neural Signalling: Neuromodulatory astrocytes , 1994, Current Biology.

[23]  M. Nedergaard,et al.  Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. , 1994, Science.

[24]  Michael J. Sanderson,et al.  Mechanisms and function of intercellular calcium signaling , 1994, Molecular and Cellular Endocrinology.

[25]  B. Wetton,et al.  Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. , 1995, The American journal of physiology.

[26]  P. Haydon,et al.  α‐Latrotoxin stimulates glutamate release from cortical astrocytes in cell culture , 1995, FEBS letters.

[27]  T. Basarsky,et al.  Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP‐25 in cultured astrocytes , 1995, FEBS letters.

[28]  P. Hanson,et al.  Botulinum and tetanus neurotoxins: emerging tools for the study of membrane fusion. , 1995, Cold Spring Harbor symposia on quantitative biology.

[29]  S. Duffy,et al.  Adrenergic calcium signaling in astrocyte networks within the hippocampal slice , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  S. Snyder,et al.  D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Pierce,et al.  Septohippocampal neurons in the rat septal complex have substantial glial coverage and receive direct contacts from noradrenaline terminals , 1995, Brain Research.

[32]  R. Robitaille,et al.  Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  V. Parpura,et al.  Neuroligand-evoked calcium-dependent release of excitatory amino acids from Schwann cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  S. B. Kater,et al.  Evidence for glutamate-mediated activation of hippocampal neurons by glial calcium waves. , 1995, Journal of neurobiology.

[35]  G. Ahnert-Hilger,et al.  Molecular aspects of tetanus and botulinum neurotoxin poisoning , 1995, Progress in Neurobiology.

[36]  J. Glowinski,et al.  Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes , 1995, Nature.

[37]  S. Jeftinija,et al.  Neuroligand‐Evoked Calcium‐Dependent Release of Excitatory Amino Acids from Cultured Astrocytes , 1996, Journal of neurochemistry.

[38]  K. McCarthy,et al.  Hippocampal Astrocytes In Situ Respond to Glutamate Released from Synaptic Terminals , 1996, The Journal of Neuroscience.

[39]  G. Papadopoulos,et al.  Ultrastructural relationships between noradrenergic nerve fibers and non‐neuronal elements in the rat cerebral cortex , 1996, Glia.

[40]  J. Trachtenberg,et al.  Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions , 1996, Trends in Neurosciences.

[41]  S. B. Kater,et al.  An extracellular signaling component in propagation of astrocytic calcium waves. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Helmut Kettenmann,et al.  Calcium signalling in glial cells , 1996, Trends in Neurosciences.

[43]  K. McCarthy,et al.  ASTROCYTIC NEUROTRANSMITTER RECEPTORS IN SITU AND IN VIVO , 1997, Progress in Neurobiology.

[44]  R. D’Ambrosio,et al.  Heterogeneity of Astrocyte Resting Membrane Potentials and Intercellular Coupling Revealed by Whole-Cell and Gramicidin-Perforated Patch Recordings from Cultured Neocortical and Hippocampal Slice Astrocytes , 1997, The Journal of Neuroscience.

[45]  T. Pozzan,et al.  Intracellular Calcium Oscillations in Astrocytes: A Highly Plastic, Bidirectional Form of Communication between Neurons and Astrocytes In Situ , 1997, The Journal of Neuroscience.

[46]  K. Zahs,et al.  Calcium Waves in Retinal Glial Cells , 1997, Science.

[47]  F. Pfrieger,et al.  Synaptic efficacy enhanced by glial cells in vitro. , 1997, Science.

[48]  S. Jeftinija,et al.  ATP stimulates release of excitatory amino acids from cultured Schwann cells , 1997, Neuroscience.

[49]  C. Jahr,et al.  Synaptic Activation of Glutamate Transporters in Hippocampal Astrocytes , 1997, Neuron.

[50]  C. Jahr,et al.  Glial Contribution to Glutamate Uptake at Schaffer Collateral–Commissural Synapses in the Hippocampus , 1998, Journal of Neuroscience.

[51]  L. Venance,et al.  Intercellular calcium signaling and gap junctional communication in astrocytes , 1998, Glia.

[52]  A. Charles,et al.  Spiral intercellular calcium waves in hippocampal slice cultures. , 1998, Journal of neurophysiology.

[53]  A. Araque,et al.  Calcium Elevation in Astrocytes Causes an NMDA Receptor-Dependent Increase in the Frequency of Miniature Synaptic Currents in Cultured Hippocampal Neurons , 1998, The Journal of Neuroscience.

[54]  A. Charles,et al.  Intercellular calcium waves in glia , 1998, Glia.

[55]  A. Verkhratsky,et al.  Glial calcium: homeostasis and signaling function. , 1998, Physiological reviews.

[56]  A. Araque,et al.  Glutamate‐dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons , 1998, The European journal of neuroscience.

[57]  S. Goldman,et al.  Astrocyte-mediated potentiation of inhibitory synaptic transmission , 1998, Nature Neuroscience.

[58]  R. Robitaille,et al.  Modulation of Synaptic Efficacy and Synaptic Depression by Glial Cells at the Frog Neuromuscular Junction , 1998, Neuron.

[59]  K. Zahs,et al.  Modulation of Neuronal Activity by Glial Cells in the Retina , 1998, The Journal of Neuroscience.

[60]  C. Naus,et al.  Connexins regulate calcium signaling by controlling ATP release. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Calcium waves between astrocytes from Cx43 knockout mice , 1998 .

[62]  L Leybaert,et al.  Inositol‐trisphosphate‐dependent intercellular calcium signaling in and between astrocytes and endothelial cells , 1998, Glia.

[63]  Tullio Pozzan,et al.  Prostaglandins stimulate calcium-dependent glutamate release in astrocytes , 1998, Nature.

[64]  K. Ballanyi,et al.  Neuron–Glia Signaling via α1 Adrenoceptor-Mediated Ca2+ Release in Bergmann Glial Cells In Situ , 1999, The Journal of Neuroscience.

[65]  K N Sheth,et al.  Purification of serine racemase: biosynthesis of the neuromodulator D-serine. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  T. Galli,et al.  Cultured glial cells express the SNAP‐25 analogue SNAP‐23 , 1999, Glia.

[67]  A. Reichenbach,et al.  Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells , 1999, Nature Neuroscience.

[68]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[69]  A C Campos de Carvalho,et al.  Gap-junctional coupling between neurons and astrocytes in primary central nervous system cultures. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. B. Kater,et al.  ATP Released from Astrocytes Mediates Glial Calcium Waves , 1999, The Journal of Neuroscience.

[71]  W. Volknandt,et al.  A plethora of presynaptic proteins associated with ATP‐storing organelles in cultured astrocytes , 1999, Glia.

[72]  C. Brosnan,et al.  IL-1beta differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Fredrik Blomstrand,et al.  Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca2+signaling. , 1999, American journal of physiology. Cell physiology.

[74]  K. Harris,et al.  Three-Dimensional Relationships between Hippocampal Synapses and Astrocytes , 1999, The Journal of Neuroscience.

[75]  Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca(2+) signaling. , 1999, The American journal of physiology.

[76]  P. Haydon,et al.  Imaging Extracellular Waves of Glutamate during Calcium Signaling in Cultured Astrocytes , 2000, The Journal of Neuroscience.

[77]  P. Somogyi,et al.  Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus , 2000, Nature.

[78]  T. Laverty,et al.  Response of Schwann cells to action potentials in development. , 2000, Science.

[79]  Z Wang,et al.  Direct observation of calcium-independent intercellular ATP signaling in astrocytes. , 2000, Analytical chemistry.

[80]  P. Haydon Neuroglial networks: Neurons and glia talk to each other , 2000, Current Biology.

[81]  P. Haydon,et al.  Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[82]  K. McCarthy,et al.  Hippocampal Astrocytes Exhibit Ca2+ ‐Elevating Muscarinic Cholinergic and Histaminergic Receptors In Situ , 2000, Journal of neurochemistry.

[83]  E. V. Van Bockstaele,et al.  Functional Coupling between Neurons and Glia , 2000, The Journal of Neuroscience.

[84]  A. Araque,et al.  SNARE Protein-Dependent Glutamate Release from Astrocytes , 2000, The Journal of Neuroscience.

[85]  D. Linden,et al.  D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[86]  J. Glowinski,et al.  Activity-Dependent Neuronal Control of Gap-Junctional Communication in Astrocytes , 2000, The Journal of cell biology.

[87]  M. Salter,et al.  P2Y1 Purinoceptor-Mediated Ca2+ Signaling and Ca2+ Wave Propagation in Dorsal Spinal Cord Astrocytes , 2000, The Journal of Neuroscience.

[88]  J. Loturco,et al.  Neural circuits in the 21st century: synaptic networks of neurons and glia. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[89]  D C Spray,et al.  Intercellular Communication in Spinal Cord Astrocytes: Fine Tuning between Gap Junctions and P2 Nucleotide Receptors in Calcium Wave Propagation , 2000, The Journal of Neuroscience.

[90]  Joseph J. LoTurco Neural circuits in the 21 st century : Synaptic networks of neurons and glia , 2000 .

[91]  B. Barres,et al.  Control of synapse number by glia. , 2001, Science.

[92]  E. Newman,et al.  Propagation of Intercellular Calcium Waves in Retinal Astrocytes and Müller Cells , 2001, The Journal of Neuroscience.