Time-Series Model-Adjusted Percentile Features: Improved Percentile Features for Land-Cover Classification Based on Landsat Data

[1]  D. Lobell,et al.  Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring , 2017 .

[2]  Zhiqiang Yang,et al.  Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms , 2010 .

[3]  Zhe Zhu,et al.  Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative , 2016 .

[4]  Brian P. Salmon,et al.  Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers , 2016, Remote. Sens..

[5]  Hankui K. Zhang,et al.  Using the 500 m MODIS Land Cover Product to Derive a Consistent Continental Scale 30 m Landsat Land Cover Classification , 2017 .

[6]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[7]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[8]  Valerie A. Thomas,et al.  Fitting the Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem in Remote Sensing Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[10]  Rick Mueller,et al.  The Multi-Resolution Land Characteristics (MRLC) Consortium - 20 Years of Development and Integration of USA National Land Cover Data , 2014, Remote. Sens..

[11]  Qiang Zhou,et al.  Training Data Selection for Annual Land Cover Classification for the Land Change Monitoring, Assessment, and Projection (LCMAP) Initiative , 2020, Remote. Sens..

[12]  David P. Roy,et al.  The Global Availability of Landsat 5 TM and Landsat 7 ETM+ Land Surface Observations and Implications for Global 30m Landsat Data Product Generation , 2013 .

[13]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[14]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[15]  James D. Wickham,et al.  Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). , 2017, Remote sensing of environment.

[16]  Zhe Zhu,et al.  Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change , 2014 .

[17]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[18]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[19]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[20]  C. Woodcock,et al.  Continuous change detection and classification of land cover using all available Landsat data , 2014 .

[21]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[22]  Thilo Wehrmann,et al.  MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data , 2014, Remote. Sens..

[23]  D. Roy,et al.  The suitability of multi-temporal web-enabled Landsat data NDVI for phenological monitoring – a comparison with flux tower and MODIS NDVI , 2012 .

[24]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[25]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[26]  C. Woodcock,et al.  Continuous monitoring of forest disturbance using all available Landsat imagery , 2012 .

[27]  Jan Verbesselt,et al.  Using spatial context to improve early detection of deforestation from Landsat time series , 2016 .

[28]  Joanne C. White,et al.  Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics , 2015 .

[29]  Christopher E. Holden,et al.  Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time , 2015 .

[30]  Zhe Zhu,et al.  Cloud detection algorithm comparison and validation for operational Landsat data products , 2017 .

[31]  Suming Jin,et al.  Completion of the 2011 National Land Cover Database for the Conterminous United States – Representing a Decade of Land Cover Change Information , 2015 .

[32]  D. Roy,et al.  Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD) , 2014 .

[33]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[34]  W. Cohen,et al.  Using Landsat-derived disturbance history (1972-2010) to predict current forest structure , 2012 .

[35]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[36]  Rick L. Lawrence,et al.  Change detection of wetland ecosystems using Landsat imagery and change vector analysis , 2007, Wetlands.

[37]  J. L. Barker,et al.  Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets , 2001 .

[38]  N. Pettorelli,et al.  Essential Biodiversity Variables , 2013, Science.

[39]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[40]  J. Townshend,et al.  Global discrimination of land cover types from metrics derived from AVHRR pathfinder data , 1995 .

[41]  The spatial patterns of anthropogenic disturbance in the western Canadian boreal forest following oil and gas development , 2015 .

[42]  David P. Roy,et al.  Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project , 2011 .