Probing quantum devices with radio-frequency reflectometry

Many important phenomena in quantum devices are dynamic, meaning that they cannot be studied using time-averaged measurements alone. Experiments that measure such transient effects are collectively known as fast readout. One of the most useful techniques in fast electrical readout is radio-frequency reflectometry, which can measure changes in impedance (both resistive and reactive) even when their duration is extremely short, down to a microsecond or less. Examples of reflectometry experiments, some of which have been realized and others so far only proposed, include projective measurements of qubits and Majorana devices for quantum computing, real-time measurements of mechanical motion, and detection of non-equilibrium temperature fluctuations. However, all of these experiments must overcome the central challenge of fast readout: the large mismatch between the typical impedance of quantum devices (set by the resistance quantum) and of transmission lines (set by the impedance of free space). Here, we review the physical principles of radio-frequency reflectometry and its close cousins, measurements of radio-frequency transmission and emission. We explain how to optimize the speed and sensitivity of a radio-frequency measurement and how to incorporate new tools, such as superconducting circuit elements and quantum-limited amplifiers into advanced radio-frequency experiments. Our aim is threefold: to introduce the readers to the technique, to review the advances to date, and to motivate new experiments in fast quantum device dynamics. Our intended audience includes experimentalists in the field of quantum electronics who want to implement radio-frequency experiments or improve them, together with physicists in related fields who want to understand how the most important radio-frequency measurements work.

[1]  D. Chrastina,et al.  All rf-based tuning algorithm for quantum devices using machine learning , 2022, 2211.04504.

[2]  J. Pekola,et al.  Radio-Frequency Coulomb-Blockade Thermometry , 2021, Physical Review Applied.

[3]  M. F. Gonzalez-Zalba,et al.  A cryo-CMOS chip that integrates silicon quantum dots and multiplexed dispersive readout electronics , 2021, Nature Electronics.

[4]  P. Krogstrup,et al.  Dynamical polarization of the fermion parity in a nanowire Josephson junction , 2021, 2112.01936.

[5]  M. F. Gonzalez-Zalba,et al.  Parametric Amplifiers Based on Quantum Dots. , 2021, Physical review letters.

[6]  J. Koski,et al.  Radio-frequency C-V measurements with sub-attofarad sensitivity , 2021, 2110.03257.

[7]  A. Houck,et al.  Moving beyond the Transmon: Noise-Protected Superconducting Quantum Circuits , 2021, PRX Quantum.

[8]  M. Manfra,et al.  Simultaneous Operations in a Two-Dimensional Array of Singlet-Triplet Qubits , 2021, PRX Quantum.

[9]  S. Tarucha,et al.  Real-Time Feedback Control of Charge Sensing for Quantum Dot Qubits , 2021, 2103.15258.

[10]  A. Houck,et al.  Experimental Realization of a Protected Superconducting Circuit Derived from the 0 – π Qubit , 2021 .

[11]  J. Koski,et al.  Rapid Microwave-Only Characterization and Readout of Quantum Dots Using Multiplexed Gigahertz-Frequency Resonators , 2021, Physical Review Applied.

[12]  Edoardo Charbon,et al.  A Fully-Integrated 40-nm 5-6.5 GHz Cryo-CMOS System-on-Chip with I/Q Receiver and Frequency Synthesizer for Scalable Multiplexed Readout of Quantum Dots , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[13]  L. Vandersypen,et al.  Radio-Frequency Reflectometry in Silicon-Based Quantum Dots , 2020, Physical Review Applied.

[14]  M. F. Gonzalez-Zalba,et al.  Scaling silicon-based quantum computing using CMOS technology , 2020, Nature Electronics.

[15]  J. Morton,et al.  Dispersive readout of reconfigurable ambipolar quantum dots in a silicon-on-insulator nanowire , 2020, Applied Physics Letters.

[16]  A. Cleland,et al.  Proposal for a Nanomechanical Qubit , 2020, Physical Review X.

[17]  G. Hilton,et al.  A quantum enhanced search for dark matter axions , 2020, Nature.

[18]  S. Girvin,et al.  Circuit quantum electrodynamics , 2020, Reviews of Modern Physics.

[19]  A. Morello,et al.  Semiconductor qubits in practice , 2020, Nature Reviews Physics.

[20]  M. F. Gonzalez-Zalba,et al.  Large Dispersive Interaction between a CMOS Double Quantum Dot and Microwave Photons , 2020, PRX Quantum.

[21]  M. F. Gonzalez-Zalba,et al.  Silicon qubit devices , 2021, Semiconductor Nanodevices.

[22]  A. Wieck,et al.  Coherent control of individual electron spins in a two-dimensional quantum dot array , 2020, Nature Nanotechnology.

[23]  M. Manfra,et al.  Detection of the Quantum Capacitance of a Point Contact via Dispersive Gate Sensing , 2020 .

[24]  M. F. Gonzalez-Zalba,et al.  Nongalvanic Calibration and Operation of a Quantum Dot Thermometer , 2020, 2012.01209.

[25]  M. Vinet,et al.  Single-electron operations in a foundry-fabricated array of quantum dots , 2020, Nature Communications.

[26]  H. Bluhm,et al.  Roadmap on quantum nanotechnologies , 2020, Nanotechnology.

[27]  M. Veldhorst,et al.  A two-dimensional array of single-hole quantum dots , 2020, Applied Physics Letters.

[28]  J. Aumentado Superconducting Parametric Amplifiers: The State of the Art in Josephson Parametric Amplifiers , 2020, IEEE Microwave Magazine.

[29]  J. Gao,et al.  Three-Wave Mixing Kinetic Inductance Traveling-Wave Amplifier with Near-Quantum-Limited Noise Performance , 2020, 2007.00638.

[30]  M. F. Gonzalez-Zalba,et al.  Charge Noise and Overdrive Errors in Dispersive Readout of Charge, Spin, and Majorana Qubits , 2020, 2006.12391.

[31]  J. Morton,et al.  Remote capacitive sensing in two-dimensional quantum-dot arrays. , 2020, Nano letters.

[32]  M. F. Gonzalez-Zalba,et al.  Spin Readout of a CMOS Quantum Dot by Gate Reflectometry and Spin-Dependent Tunneling , 2020, PRX Quantum.

[33]  M. Vinet,et al.  Single-Electron Operation of a Silicon-CMOS 2 × 2 Quantum Dot Array with Integrated Charge Sensing. , 2020, Nano letters.

[34]  C. Marcus,et al.  A Parity-Protected Superconductor-Semiconductor Qubit , 2020, 2004.03975.

[35]  M. Vinet,et al.  Charge Detection in an Array of CMOS Quantum Dots , 2020, 2004.01009.

[36]  R. Haley,et al.  Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures , 2020, Journal of Low Temperature Physics.

[37]  Dino Sejdinovic,et al.  Quantum device fine-tuning using unsupervised embedding learning , 2020, New Journal of Physics.

[38]  Michael A. Osborne,et al.  Machine learning enables completely automatic tuning of a quantum device faster than human experts , 2020, Nature Communications.

[39]  G. Steele,et al.  Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime , 2019, 1911.05550.

[40]  J. Nelson,et al.  Rapid High-Fidelity Spin-State Readout in Si / Si - Ge Quantum Dots via rf Reflectometry , 2019, Physical Review Applied.

[41]  S. Tarucha,et al.  Radio-frequency detected fast charge sensing in undoped silicon quantum dots. , 2019, Nano letters.

[42]  Justyna P. Zwolak,et al.  Autotuning of double dot devices in situ with machine learning. , 2019, Physical review applied.

[43]  K. Das,et al.  Characterizing Quantum Devices at Scale with Custom Cryo-CMOS , 2019, Physical Review Applied.

[44]  M. F. Gonzalez-Zalba,et al.  Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification. , 2019, Physical review letters.

[45]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[46]  A. Hüttel,et al.  Quantum capacitance mediated carbon nanotube optomechanics , 2019, Nature Communications.

[47]  E. Laird,et al.  A coherent nanomechanical oscillator driven by single-electron tunnelling , 2019, Nature Physics.

[48]  E. Laird,et al.  Radio-frequency optomechanical characterization of a silicon nitride drum , 2019, Scientific Reports.

[49]  G. A. D. Briggs,et al.  Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier , 2018, Journal of Applied Physics.

[50]  Micro and Nano Machined Electrometers , 2020 .

[51]  M. F. Gonzalez-Zalba,et al.  Gate reflectometry for probing charge and spin states in linear Si MOS split-gate arrays , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[52]  D. J. Reilly,et al.  Challenges in Scaling-up the Control Interface of a Quantum Computer , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[53]  M. F. Gonzalez-Zalba,et al.  Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation , 2019, 1910.10118.

[54]  W. Hsieh,et al.  Bifluxon: Fluxon-Parity-Protected Superconducting Qubit , 2019, 1910.03769.

[55]  B. Weber,et al.  Single-Shot Spin Readout in Semiconductors Near the Shot-Noise Sensitivity Limit , 2019, Physical Review X.

[56]  B. P. Wuetz,et al.  Quantum dot arrays in silicon and germanium , 2019, Applied Physics Letters.

[57]  M. F. Gonzalez-Zalba,et al.  Quantum interference capacitor based on double-passage Landau-Zener-Stückelberg-Majorana interferometry , 2019, Physical Review B.

[58]  N. Kalhor,et al.  Rapid gate-based spin read-out in silicon using an on-chip resonator , 2019, Nature Nanotechnology.

[59]  C. Marcus,et al.  Fast charge sensing of Si/SiGe quantum dots via a high-frequency accumulation gate. , 2019, Nano letters.

[60]  D. Loss,et al.  Quantum non-demolition measurement of an electron spin qubit , 2019, Nature Nanotechnology.

[61]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[62]  P. Hänggi,et al.  Quantum stochastic resonance in an a.c.-driven single-electron quantum dot , 2019, Nature Physics.

[63]  T. Ihn,et al.  Charge Detection in Gate-Defined Bilayer Graphene Quantum Dots. , 2019, Nano letters.

[64]  A. Bachtold,et al.  Cooling and self-oscillation in a nanotube electromechanical resonator , 2019, Nature Physics.

[65]  R. Ashoori,et al.  Electronic Compressibility of Magic-Angle Graphene Superlattices. , 2019, Physical review letters.

[66]  Minjin Kim,et al.  Nanomechanical characterization of quantum interference in a topological insulator nanowire , 2019, Nature Communications.

[67]  C. Marcus,et al.  Radio-Frequency Methods for Majorana-Based Quantum Devices: Fast Charge Sensing and Phase-Diagram Mapping , 2019, Physical Review Applied.

[68]  A. Clerk,et al.  Nanomechanical pump–probe measurements of insulating electronic states in a carbon nanotube , 2019, Nature Nanotechnology.

[69]  J. Wendt,et al.  Single-Shot Readout Performance of Two Heterojunction-Bipolar-Transistor Amplification Circuits at Millikelvin Temperatures , 2019, Scientific Reports.

[70]  P. T. Eendebak,et al.  Loading a quantum-dot based “Qubyte” register , 2019, npj Quantum Information.

[71]  Leo P. Kouwenhoven,et al.  Rapid Detection of Coherent Tunneling in an InAs Nanowire Quantum Dot through Dispersive Gate Sensing , 2018, Physical Review Applied.

[72]  M. F. Gonzalez-Zalba,et al.  Small-signal equivalent circuit for double quantum dots at low-frequencies , 2018, Applied Physics Letters.

[73]  D. DiVincenzo,et al.  Transmission Lines and Metamaterials Based on Quantum Hall Plasmonics , 2018, Physical Review Applied.

[74]  M. Vinet,et al.  Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon , 2018, Nature Communications.

[75]  M. Broome,et al.  Benchmarking high fidelity single-shot readout of semiconductor qubits , 2018, New Journal of Physics.

[76]  G. Hilton,et al.  Squeezed Vacuum Used to Accelerate the Search for a Weak Classical Signal , 2018, Physical Review X.

[77]  Maud Vinet,et al.  Gate-based high fidelity spin readout in a CMOS device , 2018, Nature Nanotechnology.

[78]  J. Petta,et al.  Shuttling a single charge across a one-dimensional array of silicon quantum dots , 2018, Nature Communications.

[79]  E. Bakkers,et al.  Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments , 2018, Physical Review Applied.

[80]  Alessandro Rossi,et al.  A CMOS dynamic random access architecture for radio-frequency readout of quantum devices , 2018, Nature Electronics.

[81]  Andrew S. Dzurak,et al.  Gate-based single-shot readout of spins in silicon , 2018, Nature Nanotechnology.

[82]  M. F. Gonzalez-Zalba,et al.  Low-temperature tunable radio-frequency resonator for sensitive dispersive readout of nanoelectronic devices , 2018, Applied Physics Letters.

[83]  A. Clerk,et al.  High-Efficiency Measurement of an Artificial Atom Embedded in a Parametric Amplifier , 2018, Physical Review X.

[84]  A. Gossard,et al.  Gate-Sensing Charge Pockets in the Semiconductor-Qubit Environment , 2017, Physical Review Applied.

[85]  S. Barraud,et al.  Readout and control of the spin-orbit states of two coupled acceptor atoms in a silicon transistor , 2018, Science Advances.

[86]  T. Taniguchi,et al.  Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions , 2018, Nature Communications.

[87]  T. Kobayashi,et al.  Single-Shot Single-Gate rf Spin Readout in Silicon , 2018, Physical Review X.

[88]  E. Laird,et al.  Measuring carbon nanotube vibrations using a single-electron transistor as a fast linear amplifier , 2018, Applied Physics Letters.

[89]  A. Bachtold,et al.  Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators , 2018, Nano letters.

[90]  J. Pekola,et al.  Noninvasive Thermometer Based on the Zero-Bias Anomaly of a Superconducting Junction for Ultrasensitive Calorimetry , 2018, Physical Review Applied.

[91]  M. Prunnila,et al.  A flux-driven Josephson parametric amplifier for sub-GHz frequencies fabricated with side-wall passivated spacer junction technology , 2018, Superconductor Science and Technology.

[92]  M. F. Gonzalez-Zalba,et al.  Primary thermometry of a single reservoir using cyclic electron tunneling to a quantum dot , 2018, Communications Physics.

[93]  V. Manucharyan,et al.  Demonstration of Protection of a Superconducting Qubit from Energy Decay. , 2018, Physical review letters.

[94]  J. Béard,et al.  Design and Tests of the 100-T Triple Coil at LNCMI , 2018, IEEE Transactions on Applied Superconductivity.

[95]  O. Legeza,et al.  Imaging the Wigner Crystal of Electrons in One Dimension , 2018, 1803.08523.

[96]  J. P. Dehollain,et al.  A 2 × 2 quantum dot array with controllable inter-dot tunnel couplings , 2018, 1802.05446.

[97]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[98]  Sylvain Barraud,et al.  Radio-Frequency Capacitive Gate-Based Sensing , 2018, Physical Review Applied.

[99]  M. A. Rol,et al.  Evolution of Nanowire Transmon Qubits and Their Coherence in a Magnetic Field. , 2017, Physical review letters.

[100]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[101]  Leigh S. Martin,et al.  Stroboscopic Qubit Measurement with Squeezed Illumination. , 2017, Physical review letters.

[102]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[103]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[104]  G. Hilton,et al.  Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers. , 2017, Applied physics letters.

[105]  E. Laird,et al.  Displacemon electromechanics: how to detect quantum interference in a nanomechanical resonator , 2017, 1710.01920.

[106]  M. F. Gonzalez-Zalba,et al.  Conditional dispersive readout of a CMOS quantum dot via an integrated transistor circuit , 2017, 1708.04159.

[107]  A. Wieck,et al.  A linear triple quantum dot system in isolated configuration , 2017, 1705.06948.

[108]  T. Kontos,et al.  Observation of the frozen charge of a Kondo resonance , 2017, Nature.

[109]  John Watson,et al.  Time Division Multiplexing of Semiconductor Qubits , 2017 .

[110]  Kang L. Wang,et al.  Zero-field edge plasmons in a magnetic topological insulator , 2017, Nature Communications.

[111]  Joel R. Wendt,et al.  High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism , 2017, 1703.02651.

[112]  R. J. Schoelkopf,et al.  Faithful conversion of propagating quantum information to mechanical motion , 2017, Nature Physics.

[113]  L. Hollenberg,et al.  Atomically engineered electron spin lifetimes of 30 s in silicon , 2017, Science Advances.

[114]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[115]  Takashi Nakajima,et al.  Robust Single-Shot Spin Measurement with 99.5% Fidelity in a Quantum Dot Array. , 2017, Physical review letters.

[116]  Werner Wegscheider,et al.  Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator , 2017, 1701.03433.

[117]  Christian Enss,et al.  Demonstration of a scalable frequency-domain readout of metallic magnetic calorimeters by means of a microwave SQUID multiplexer , 2017 .

[118]  Y. Oreg,et al.  Observed quantization of anyonic heat flow , 2016, Nature.

[119]  M. Sillanpää,et al.  Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations. , 2016, Physical review letters.

[120]  Maud Vinet,et al.  Level Spectrum and Charge Relaxation in a Silicon Double Quantum Dot Probed by Dual-Gate Reflectometry. , 2016, Nano letters.

[121]  G. Steele,et al.  Quantum paraelectricity probed by superconducting resonators , 2016, 1607.08146.

[122]  M. F. Gonzalez-Zalba,et al.  Quantum and tunneling capacitance in charge and spin qubits , 2016, 1604.02884.

[123]  M. Simmons,et al.  High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation , 2016 .

[124]  J. Morton,et al.  Magnetic resonance with squeezed microwaves , 2016, 1610.03329.

[125]  M. F. Gonzalez-Zalba,et al.  Dispersive readout of a silicon quantum dot with an accumulation-mode gate sensor , 2016, 1610.00767.

[126]  R. Egger,et al.  Majorana box qubits , 2016, 1609.01697.

[127]  E. Laird,et al.  Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity. , 2016, Physical review letters.

[128]  J. Pekola,et al.  Cascade Electronic Refrigerator Using Superconducting Tunnel Junctions , 2016, 1605.00830.

[129]  Takashi Nakajima,et al.  A fault-tolerant addressable spin qubit in a natural silicon quantum dot , 2016, Science Advances.

[130]  Franco Nori,et al.  Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor. , 2016, Nano letters.

[131]  D. Nguyen,et al.  Status and Development of Pulsed Magnets at the NHMFL Pulsed Field Facility , 2016, IEEE Transactions on Applied Superconductivity.

[132]  A. C. Doherty,et al.  On-Chip Microwave Quantum Hall Circulator , 2016, 1601.00634.

[133]  P. Kim,et al.  Modulation of mechanical resonance by chemical potential oscillation in graphene , 2015, Nature Physics.

[134]  C. Marcus,et al.  Milestones toward Majorana-based quantum computing , 2015, 1511.05153.

[135]  S Rogge,et al.  Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots , 2015, Nature Communications.

[136]  D. Ritchie,et al.  Sensitive radio-frequency measurements of a quantum dot by tuning to perfect impedance matching , 2015, 1510.06944.

[137]  Takashi Nakajima,et al.  Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot , 2015, Scientific Reports.

[138]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[139]  Alexandre Blais,et al.  Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction. , 2015, Physical review letters.

[140]  M. F. Gonzalez-Zalba,et al.  Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.

[141]  T. Kontos,et al.  Coherent coupling of a single spin to microwave cavity photons , 2015, Science.

[142]  S. Barraud,et al.  Charge dynamics and spin blockade in a hybrid double quantum dot in silicon , 2015, 1503.01049.

[143]  L. DiCarlo,et al.  Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates , 2015, 1502.04082.

[144]  J. R. Petta,et al.  Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier , 2015, 1502.01283.

[145]  M. F. Gonzalez-Zalba,et al.  Probing the limits of gate-based charge sensing , 2015, Nature Communications.

[146]  Y. Ando,et al.  Topological Crystalline Insulators and Topological Superconductors: From Concepts to Materials , 2015, 1501.00531.

[147]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[148]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[149]  A. Clerk Quantum noise and quantum measurement , 2014 .

[150]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[151]  M. F. Gonzalez-Zalba,et al.  An exchange-coupled donor molecule in silicon. , 2013, Nano letters.

[152]  L. Ioffe,et al.  Protected Josephson Rhombus chains. , 2013, Physical review letters.

[153]  A. Gossard,et al.  Coherent operations and screening in multielectron spin qubits. , 2013, Physical review letters.

[154]  S. Barraud,et al.  Thermionic charge transport in CMOS nano-transistors , 2013, 1312.2749.

[155]  D. Estève,et al.  Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial , 2013, 1404.1792.

[156]  T. Palomaki,et al.  Entangling Mechanical Motion with Microwave Fields , 2013, Science.

[157]  J. Delft,et al.  Microscopic origin of the ‘0.7-anomaly’ in quantum point contacts , 2013, Nature.

[158]  E. J. Koop,et al.  Odd and even Kondo effects from emergent localization in quantum point contacts , 2013, Nature.

[159]  Dong Liu,et al.  Ultrasensitive force detection with a nanotube mechanical resonator. , 2013, Nature nanotechnology.

[160]  T. Kippenberg,et al.  Cavity Optomechanics , 2013, 1303.0733.

[161]  T. Ihn,et al.  A circuit analysis of an in situ tunable radio-frequency quantum point contact. , 2013, The Review of scientific instruments.

[162]  John Preskill,et al.  Protected gates for superconducting qubits , 2013, 1302.4122.

[163]  D. Ralph,et al.  Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube , 2013, Nature Physics.

[164]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[165]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[166]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.

[167]  M. F. Gonzalez-Zalba,et al.  Tunable aluminium-gated single electron transistor on a doped silicon-on- insulator etched nanowire , 2012 .

[168]  A. Wieck,et al.  A few-electron quadruple quantum dot in a closed loop , 2012, 1209.0733.

[169]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[170]  M. Beck,et al.  Optimization of sample-chip design for stub-matched radio-frequency reflectometry measurements , 2012, 1206.1785.

[171]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[172]  J. R. Petta,et al.  Radio frequency charge sensing in InAs nanowire double quantum dots , 2012, 1205.6494.

[173]  T. Ihn,et al.  Fast detection of single-charge tunneling to a graphene quantum dot in a multi-level regime , 2012, 1204.4216.

[174]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[175]  H. Zirath,et al.  Ultralow-Power Cryogenic InP HEMT With Minimum Noise Temperature of 1 K at 6 GHz , 2012, IEEE Electron Device Letters.

[176]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[177]  L. Ioffe,et al.  Microwave spectroscopy of a Cooper-pair transistor coupled to a lumped-element resonator , 2011, 1111.2332.

[178]  J. Wabnig,et al.  Measuring the complex admittance of a carbon nanotube double quantum dot. , 2011, Physical review letters.

[179]  C. Lieber,et al.  Hole spin relaxation in Ge-Si core-shell nanowire qubits. , 2011, Nature nanotechnology.

[180]  A. Ferguson,et al.  Impedance of the single-electron transistor at radio-frequencies , 2011, 1108.3463.

[181]  D. Cory,et al.  Dynamical decoupling and noise spectroscopy with a superconducting flux qubit , 2011, 1101.4707.

[182]  K. West,et al.  Local charge of the ν = 5/2 fractional quantum Hall state , 2010, Nature.

[183]  T. Ihn,et al.  An in situ tunable radio-frequency quantum point contact , 2010, 1009.1746.

[184]  Luigi Frunzio,et al.  Tunable superconducting nanoinductors , 2010, Nanotechnology.

[185]  Robert McDermott,et al.  Radio-frequency amplifiers based on dc SQUIDs , 2010 .

[186]  D. P. DiVincenzo,et al.  Coherent spin manipulation in an exchange-only qubit , 2010, 1005.0273.

[187]  D. Ritchie,et al.  Charge and spin state readout of a double quantum dot coupled to a resonator. , 2010, Nano letters.

[188]  F. Persson,et al.  Fast readout of a single Cooper-pair box using its quantum capacitance , 2010, 1004.3279.

[189]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[190]  E. Henriksen,et al.  Measurement of the electronic compressibility of bilayer graphene , 2010, 1004.2543.

[191]  A. Yacoby,et al.  Electron liquids and solids in one dimension , 2010, Nature.

[192]  J. Kycia,et al.  A high speed radio-frequency quantum point contact charge detector for time resolved readout applications of spin qubits , 2010 .

[193]  C. Stampfer,et al.  Quantum capacitance and density of states of graphene , 2010, 1001.4690.

[194]  A. C. Gossard,et al.  Fast Sensing of Double-Dot Charge Arrangement and Spin State with a Radio-Frequency Sensor Quantum Dot , 2010, 1001.3585.

[195]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.

[196]  D B Tanner,et al.  SQUID-based microwave cavity search for dark-matter axions. , 2009, Physical review letters.

[197]  Liang Fu,et al.  Electron teleportation via Majorana bound states in a mesoscopic superconductor. , 2009, Physical review letters.

[198]  G. Lonzarich,et al.  Quantum Criticality in Ferroelectrics , 2009, 0903.1445.

[199]  F. Persson,et al.  Excess dissipation in a single-electron box: the Sisyphus resistance. , 2009, Nano letters.

[200]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[201]  M. Blencowe,et al.  Measurement of quantum noise in a single-electron transistor near the quantum limit , 2009 .

[202]  Yuyuan Tian,et al.  Measurement of the quantum capacitance of graphene. , 2009, Nature nanotechnology.

[203]  P. M. Echternach,et al.  Nanomechanical measurements of a superconducting qubit , 2009, Nature.

[204]  J. Bardin,et al.  Matched wideband low-noise amplifiers for radio astronomy. , 2009, The Review of scientific instruments.

[205]  A. Gossard,et al.  Rapid single-shot measurement of a singlet-triplet qubit. , 2009, Physical review letters.

[206]  S. K. Watson,et al.  Electron-nuclear interaction in 13C nanotube double quantum dots , 2008, 0811.3236.

[207]  S. K. Watson,et al.  Relaxation and dephasing in a two-electron 13C nanotube double quantum dot. , 2008, Physical review letters.

[208]  D. Ritchie,et al.  Radio-frequency reflectometry on large gated two-dimensional systems. , 2008, Review of Scientific Instruments.

[209]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[210]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[211]  A. Dzurak,et al.  A silicon radio-frequency single electron transistor , 2008 .

[212]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[213]  H.-G. Meyer,et al.  Sisyphus cooling and amplification by a superconducting qubit , 2007, 0708.0665.

[214]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[215]  M. Kastner,et al.  Electrical control of spin relaxation in a quantum dot. , 2007, Physical review letters.

[216]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[217]  D. A. Ritchie,et al.  Single shot charge detection using a radio-frequency quantum point contact , 2007, 0907.1010.

[218]  Charles M. Lieber,et al.  A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. , 2007, Nature nanotechnology.

[219]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[220]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[221]  A. Gossard,et al.  Fast single-charge sensing with a rf quantum point contact , 2007, 0707.2946.

[222]  A. Dzurak,et al.  Gate-defined quantum dots in intrinsic silicon. , 2007, Nano letters.

[223]  T. Ihn,et al.  A Radio Frequency Quantum Point Contact Charge Read‐Out , 2007 .

[224]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[225]  C. C. Huang,et al.  Efficient and sensitive capacitive readout of nanomechanical resonator arrays. , 2007, Nano letters.

[226]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[227]  Paul L. McEuen,et al.  Measurement of the quantum capacitance of interacting electrons in carbon nanotubes , 2006 .

[228]  A. Kitaev,et al.  Protected qubit based on a superconducting current mirror , 2006, cond-mat/0609441.

[229]  D. Williams,et al.  Radio-frequency point-contact electrometer , 2006, 0708.2473.

[230]  P. Hakonen,et al.  Continuous-time monitoring of Landau-Zener interference in a cooper-pair box. , 2006, Physical review letters.

[231]  C. Wilson,et al.  Fast quantum limited readout of a superconducting qubit using a slow oscillator , 2006, cond-mat/0602583.

[232]  T. Duty,et al.  An ultrasensitive radio-frequency single-electron transistor working up to 4.2 K , 2006, cond-mat/0602518.

[233]  A. Gossard,et al.  Counting statistics of single electron transport in a quantum dot. , 2005, Physical review letters.

[234]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[235]  J. Krupka,et al.  Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures , 2005 .

[236]  P. Hakonen,et al.  Charge sensitivity of the inductive single-electron transistor , 2005, cond-mat/0504122.

[237]  K. West,et al.  Spin-Charge Separation and Localization in One Dimension , 2005, Science.

[238]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[239]  T. M. Buehler,et al.  Toward a quantum-limited charge detector , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[240]  L. Vandersypen,et al.  Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. , 2004, Physical review letters.

[241]  A. Gossard,et al.  Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot , 2004, cond-mat/0410679.

[242]  J. Martinis,et al.  Superconducting Qubits: A Short Review , 2004, cond-mat/0411174.

[243]  A. Yacoby,et al.  Localization of Fractionally Charged Quasi-Particles , 2004, Science.

[244]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[245]  L. Vandersypen,et al.  Real-time detection of single-electron tunneling using a quantum point contact , 2004, cond-mat/0407121.

[246]  A. Yacoby,et al.  The microscopic nature of localization in the quantum Hall effect , 2004, Nature.

[247]  Keeley A. Crockett,et al.  Differential charge sensing and charge delocalization in a tunable double quantum dot. , 2003, Physical review letters.

[248]  A. Cleland,et al.  Nanoscale radio-frequency thermometry , 2003 .

[249]  Wei Lu,et al.  Real-time detection of electron tunnelling in a quantum dot , 2003, Nature.

[250]  T. M. Buehler,et al.  Development and operation of the twin radio frequency single electron transistor for cross-correlated charge detection , 2003, cond-mat/0302085.

[251]  D. Schuster,et al.  Measurement of the excited-state lifetime of a microelectronic circuit. , 2003, Physical review letters.

[252]  E. K. Irish,et al.  Quantum measurement of a coupled nanomechanical resonator–Cooper-pair box system , 2003, cond-mat/0301252.

[253]  P. Mohanty,et al.  Quantum friction of micromechanical resonators at low temperatures. , 2003, Physical review letters.

[254]  P. Matagne,et al.  Experiments And Simulations On A Few‐Electron Quantum Dot Circuit With Integrated Charge Read‐Out , 2002, cond-mat/0212489.

[255]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[256]  L. Ioffe,et al.  Possible realization of an ideal quantum computer in Josephson junction array , 2002, cond-mat/0205186.

[257]  J. Vidal,et al.  Pairing of Cooper pairs in a fully frustrated Josephson-junction chain. , 2002, Physical review letters.

[258]  R. Schoelkopf,et al.  Radio-frequency single-electron transistor: Toward the shot-noise limit , 2001 .

[259]  S. Tarucha,et al.  Few-electron quantum dots , 2001 .

[260]  R J Schoelkopf,et al.  Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. , 2001, Physical review letters.

[261]  John Clarke,et al.  Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz , 2001 .

[262]  Michel H. Devoret,et al.  Amplifying quantum signals with the single-electron transistor , 2000, Nature.

[263]  Y. Hirayama,et al.  Charge noise analysis of an AlGaAs/GaAs quantum dot using transmission-type radio-frequency single-electron transistor technique , 2000, cond-mat/0006008.

[264]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[265]  Odintsov Schottky barriers in carbon nanotube heterojunctions , 1999, Physical review letters.

[266]  Jerry Tersoff,et al.  Novel Length Scales in Nanotube Devices , 1999 .

[267]  David B. Haviland,et al.  NOISE MEASUREMENTS OF SINGLE ELECTRON TRANSISTORS USING A TRANSIMPEDANCE AMPLIFIER , 1999 .

[268]  Alexander N. Korotkov,et al.  Charge sensitivity of radio frequency single-electron transistor , 1999, cond-mat/9902206.

[269]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[270]  T. Claeson,et al.  Gain dependence of the noise in the single electron transistor , 1998, cond-mat/9806354.

[271]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[272]  Rolf Landauer,et al.  Condensed-matter physics: The noise is the signal , 1998, Nature.

[273]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[274]  D. Mahalu,et al.  Direct observation of a fractional charge , 1997, Nature.

[275]  Zorin Quantum-limited electrometer based on single cooper pair tunneling. , 1996, Physical review letters.

[276]  Haviland,et al.  Extending the high-frequency limit of a single-electron transistor by on-chip impedance transformation. , 1996, Physical review. B, Condensed matter.

[277]  J. E. Mooij,et al.  Broadband single‐electron tunneling transistor , 1996 .

[278]  West,et al.  Compressibility of the two-dimensional electron gas: Measurements of the zero-field exchange energy and fractional quantum Hall gap. , 1994, Physical review. B, Condensed matter.

[279]  Korotkov Intrinsic noise of the single-electron transistor. , 1994, Physical review. B, Condensed matter.

[280]  Robert M. Westervelt,et al.  Cryogenic field‐effect transistor with single electronic charge sensitivity , 1994 .

[281]  West,et al.  N-electron ground state energies of a quantum dot in magnetic field. , 1993, Physical review letters.

[282]  Ritchie,et al.  Measurements of Coulomb blockade with a noninvasive voltage probe. , 1993, Physical review letters.

[283]  M. Kastner,et al.  The single-electron transistor , 1992 .

[284]  West,et al.  Single-electron capacitance spectroscopy of discrete quantum levels. , 1992, Physical review letters.

[285]  M. Devoret,et al.  Direct observation of macroscopic charge quantization , 1991 .

[286]  C. Beenakker,et al.  Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. , 1991, Physical review. B, Condensed matter.

[287]  T. Thornton,et al.  One-dimensional transport and the quantisation of the ballistic resistance , 1988 .

[288]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[289]  S. Luryi Quantum capacitance devices , 1988 .

[290]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[291]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[292]  R. A. Webb,et al.  Noise thermometry at ultralow temperatures , 1973 .

[293]  H. Collan,et al.  A Pulsed NMR System for Nuclear Thermometry Below 2 K , 1973 .

[294]  C. Mead,et al.  Permittivity of Strontium Titanate , 1972 .

[295]  H. Unoki,et al.  Dielectric Properties of SrTi O 3 at Low Temperatures , 1971 .

[296]  M. Saifi,et al.  Dielectric Properties of Strontium Titanate at Low Temperature , 1970 .

[297]  K. Van Dyke The Piezo-Electric Resonator and Its Equivalent Network , 1928, Proceedings of the Institute of Radio Engineers.