Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study.

Lipid peroxidation plays an important role in cell membrane damage. We investigated the effect of lipid peroxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayers using molecular dynamics simulations. We focused on four main oxidation products of linoleic acid with either a hydroperoxide or an aldehyde group: 9-trans, cis-hydroperoxide linoleic acid, 13-trans, cis-hydroperoxide linoleic acid, 9-oxo-nonanoic acid, and 12-oxo-9-dodecenoic acid. These oxidized chains replaced the sn-2 linoleate chain. The properties of PLPC lipid bilayers were characterized as a function of the concentration of oxidized lipids, with concentrations from 2.8% to 50% for each oxidation product. The introduction of oxidized functional groups in the lipid tail leads to an important conformational change in the lipids: the oxidized tails bend toward the water phase and the oxygen atoms form hydrogen bonds with water and the polar lipid headgroup. This conformational change leads to an increase in the average area per lipid and, correspondingly, to a decrease of the bilayer thickness and the deuterium order parameters for the lipid tails, especially evident at high concentrations of oxidized lipid. Water defects are observed in the bilayers more frequently as the concentration of the oxidized lipids is increased. The changes in the structural properties of the bilayer and the water permeability are associated with the tendency of the oxidized lipid tails to bend toward the water interface. Our results suggest that one mechanism of cell membrane damage is the increase in membrane permeability due to the presence of oxidized lipids.

[1]  Yan Shen,et al.  Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics , 2006, Schizophrenia Research.

[2]  D. Tieleman,et al.  Molecular Dynamics Simulation of a Polyunsaturated Lipid Bilayer Susceptible to Lipid Peroxidation , 2004 .

[3]  D. Butterfield,et al.  Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. , 2001, Trends in molecular medicine.

[4]  B. Hess Determining the shear viscosity of model liquids from molecular dynamics simulations , 2002 .

[5]  P. Gibson,et al.  Biomarkers of lipid peroxidation, airway inflammation and asthma , 2003, European Respiratory Journal.

[6]  M. Mattson,et al.  A Role for 4‐Hydroxynonenal, an Aldehydic Product of Lipid Peroxidation, in Disruption of Ion Homeostasis and Neuronal Death Induced by Amyloid β‐Peptide , 1997, Journal of neurochemistry.

[7]  T. E. Thompson,et al.  Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. , 1992, Biochemistry.

[8]  Perttu S. Niemelä,et al.  Influence of chain length and unsaturation on sphingomyelin bilayers. , 2006, Biophysical journal.

[9]  I. Vattulainen,et al.  Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. , 2007, The journal of physical chemistry. B.

[10]  J. Downey,et al.  Free radicals and their involvement during long-term myocardial ischemia and reperfusion. , 1990, Annual review of physiology.

[11]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[12]  R J Mark,et al.  Amyloid β-Peptide Impairs Glucose Transport in Hippocampal and Cortical Neurons: Involvement of Membrane Lipid Peroxidation , 1997, The Journal of Neuroscience.

[13]  J. Berliner,et al.  The role of oxidized lipoproteins in atherogenesis. , 1996, Free radical biology & medicine.

[14]  A. Becke Density-functional thermochemistry. , 1996 .

[15]  Christian Kandt,et al.  Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid–protein interactions, side chain transfer free energies and model proteins , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  C Zannoni,et al.  Lipid peroxidation and fluidity of plasma membranes from rat liver and Morris hepatoma 3924A , 1984, FEBS letters.

[17]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[18]  F. Weinhold,et al.  Natural population analysis , 1985 .

[19]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[20]  S. Nagatsuka,et al.  Effects of membrane stabilizing agents and radiation on liposomal membranes. , 1986, Drugs under experimental and clinical research.

[21]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[22]  G. Stark,et al.  The effect of ionizing radiation on lipid membranes. , 1991, Biochimica et biophysica acta.

[23]  B. Halliwell The antioxidant paradox , 2000, The Lancet.

[24]  D. Tieleman,et al.  Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl. , 2004, Biophysical journal.

[25]  D. Engelman,et al.  Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. , 1983, Journal of molecular biology.

[26]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[27]  J. Kirkwood The Statistical Mechanical Theory of Transport Processes I. General Theory , 1946 .

[28]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[29]  Ananth Grama,et al.  Lateral organization in lipid-cholesterol mixed bilayers. , 2007, Biophysical journal.

[30]  A. Sevanian,et al.  Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. , 1992, Biochemistry.

[31]  R. Mason,et al.  Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis. , 1997, Free radical biology & medicine.

[32]  R. Mason,et al.  Lipid peroxyl radical intermediates in the peroxidation of polyunsaturated fatty acids by lipoxygenase. Direct electron spin resonance investigations. , 1989, The Journal of biological chemistry.

[33]  T. Mandal,et al.  Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane. , 1980, Radiation research.

[34]  J. McCord,et al.  Oxygen-derived free radicals in postischemic tissue injury. , 1985, The New England journal of medicine.

[35]  G. Bartosz,et al.  Effect of hyperthermia and lipid peroxidation on the erythrocyte membrane structure. , 1991, International journal of radiation biology.

[36]  J. Tabony,et al.  Quasielastic neutron scattering measurements of fast local translational diffusion of lipid molecules in phospholipid bilayers. , 1991, Biochimica et biophysica acta.

[37]  S. Chatterjee,et al.  Liposomes as membrane model for study of lipid peroxidation. , 1988, Free radical biology & medicine.

[38]  S. Kawato,et al.  Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain , 1982, FEBS letters.

[39]  A. Sevanian,et al.  Lipid peroxidation and phospholipase A2 activity in liposomes composed of unsaturated phospholipids: a structural basis for enzyme activation. , 1988, Biochimica et biophysica acta.

[40]  J. Baenziger,et al.  Average structural and motional properties of a diunsaturated acyl chain in a lipid bilayer: effects of two cis-unsaturated double bonds. , 1991, Biochemistry.

[41]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[42]  E. Dratz,et al.  A new role for phospholipase A2: protection of membranes from lipid peroxidation damage , 1987 .

[43]  B. Halliwell,et al.  Role of free radicals and catalytic metal ions in human disease: an overview. , 1990, Methods in enzymology.

[44]  J. Keaney,et al.  Antioxidants and atherosclerotic heart disease. , 1997, The New England journal of medicine.

[45]  Amanda S. Barnard,et al.  Visualization of Hybridization in Nanocarbon Systems , 2005 .

[46]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[47]  P. Williamson,et al.  Peroxidation-induced perturbations of erythrocyte lipid organization. , 1990, Biochimica et biophysica acta.

[48]  Alexander D. MacKerell,et al.  Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. , 1997, Biophysical journal.

[49]  Roland Faller,et al.  Simulation of domain formation in DLPC-DSPC mixed bilayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[50]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[51]  C. Richter,et al.  Biophysical consequences of lipid peroxidation in membranes. , 1987, Chemistry and physics of lipids.

[52]  Jonathan W. Essex,et al.  Permeation of small molecules through a lipid bilayer: a computer simulation study , 2004 .

[53]  Ilpo Vattulainen,et al.  Assessing the Nature of Lipid Raft Membranes , 2007, PLoS Comput. Biol..

[54]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[55]  N. Porter,et al.  Mechanisms of free radical oxidation of unsaturated lipids , 1995, Lipids.

[56]  P. Kinnunen,et al.  Characterization of two oxidatively modified phospholipids in mixed monolayers with DPPC. , 2006, Biophysical journal.

[57]  P. Coates,et al.  Role of peroxidases in Parkinson disease: a hypothesis. , 2005, Free radical biology & medicine.

[58]  M. Hyvönen,et al.  Molecular dynamics simulations of unsaturated lipid bilayers: effects of varying the numbers of double bonds , 2005, European Biophysics Journal.

[59]  W. S. Thayer,et al.  Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes. , 1983, Biochimica et biophysica acta.

[60]  S. Nojima,et al.  Effect of ferrous ion and ascorbate-induced lipid peroxidation on liposomal membranes. , 1981, Biochimica et biophysica acta.

[61]  G. Bartosz,et al.  A spin-label study of the effect of gamma radiation on erythrocyte membrane. Influence of lipid peroxidation on membrane structure. , 1979, International journal of radiation biology and related studies in physics, chemistry, and medicine.

[62]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[63]  M. Swart Density functional theory applied to copper proteins , 2002 .

[64]  M. H. Brodnitz Autoxidation of saturated fatty acids. A review , 1968 .

[65]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[66]  Herman J. C. Berendsen,et al.  Simulation of Water Transport through a Lipid Membrane , 1994 .

[67]  Perttu S. Niemelä,et al.  Free Volume Properties of Sphingomyelin, DMPC, DPPC, and PLPC Bilayers , 2005 .

[68]  Derek A Pratt,et al.  Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids. , 2003, Journal of the American Chemical Society.

[69]  Y. Vladimirov,et al.  The increase of phospholipid bilayer rigidity after lipid peroxidation , 1977, FEBS letters.

[70]  W R Markesbery,et al.  Oxidative stress hypothesis in Alzheimer's disease. , 1997, Free radical biology & medicine.

[71]  Siewert J. Marrink,et al.  The binary mixing behavior of phospholipids in a bilayer : A molecular dynamics study , 2004 .

[72]  P. Indovina,et al.  Gamma-irradiation effects on phosphatidylcholine multilayer liposomes: calorimetric, NMR, and spectrofluorimetric studies. , 1984, Radiation research.

[73]  Olle Edholm,et al.  Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion. , 2006, The Journal of chemical physics.

[74]  J. Seelig,et al.  Lipid solvation of cytochrome c oxidase. Deuterium, nitrogen-14, and phosphorus-31 nuclear magnetic resonance studies on the phosphocholine head group and on cis-unsaturated fatty acyl chains. , 1983, Biochemistry.

[75]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[76]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[77]  E. Sackmann,et al.  Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering , 1992 .

[78]  C. Marsden,et al.  Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson's Disease , 1989, Journal of neurochemistry.

[79]  K. Gawrisch,et al.  Effect of Unsaturated Lipid Chains on Dimensions, Molecular Order and Hydration of Membranes , 2001 .

[80]  Herman J. C. Berendsen,et al.  Permeation Process of Small Molecules across Lipid Membranes Studied by Molecular Dynamics Simulations , 1996 .

[81]  A. Sum,et al.  Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. , 2007, Biochimica et biophysica acta.

[82]  O. Edholm,et al.  Cholesterol in model membranes. A molecular dynamics simulation. , 1992, Biophysical journal.

[83]  S. Kawato,et al.  Lipid peroxidation decreases the rotational mobility of cytochrome P-450 in rat liver microsomes. , 1985, Biochimica et biophysica acta.

[84]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[85]  E. Evans,et al.  Water permeability and mechanical strength of polyunsaturated lipid bilayers. , 2000, Biophysical journal.

[86]  J. Haile Molecular Dynamics Simulation , 1992 .

[87]  R. Weindruch,et al.  Oxidative Stress, Caloric Restriction, and Aging , 1996, Science.