A random variable shape parameter strategy for radial basis function approximation methods
暂无分享,去创建一个
[1] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[2] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[3] Robert Schaback,et al. Adaptive Interpolation by Scaled Multiquadrics , 2002, Adv. Comput. Math..
[4] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[5] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[6] E. Kansa,et al. Numerical simulation of two-dimensional combustion using mesh-free methods , 2009 .
[7] Robert Schaback,et al. On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..
[8] Benny Y. C. Hon,et al. An efficient numerical scheme for Burgers' equation , 1998, Appl. Math. Comput..
[9] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[10] R. E. Carlson,et al. Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .