Mechanisms, models and methods of vapor deposition

[1]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[2]  H. Wadley,et al.  The low energy ion assisted control of interfacial structure: Ion incident energy effects , 2000 .

[3]  Y. Kawazoe,et al.  Computational Materials Science: From Ab Initio to Monte Carlo Methods , 2000 .

[4]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[5]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[6]  H. Wadley,et al.  Hyperthermal vapor deposition of copper: athermal and biased diffusion effects , 1999 .

[7]  H. Wadley,et al.  Hyperthermal vapor deposition of copper: reflection and resputtering effects , 1999 .

[8]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[9]  D. Awschalom,et al.  Electron Spin and Optical Coherence in Semiconductors , 1999 .

[10]  D. G. Pettifor,et al.  Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory , 1999 .

[11]  David G. Pettifor,et al.  ANALYTIC BOND-ORDER POTENTIALS BEYOND TERSOFF-BRENNER. II. APPLICATION TO THE HYDROCARBONS , 1999 .

[12]  J. Nørskov,et al.  Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen , 1999, Nature.

[13]  Haydn N. G. Wadley,et al.  Twin formation during the atomic deposition of copper , 1999 .

[14]  Multiscale Simulations of the RF Diode Sputtering of Copper , 1999 .

[15]  A. Voter,et al.  Accelerating the dynamics of infrequent events: Combining hyperdynamics and parallel replica dynamics to treat epitaxial layer growth , 1998 .

[16]  J. Butler,et al.  Atomic-scale simulations of chemical vapor deposition on flat and vicinal diamond substrates , 1998 .

[17]  C. Boragno,et al.  Ripple Wave Vector Rotation in Anisotropic Crystal Sputtering , 1998 .

[18]  H. Wadley,et al.  Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: The effects of adatom incident energy , 1998 .

[19]  D. Pan,et al.  Conduction intersubband (In,Ga)As/GaAs quantum dot infrared photodetectors , 1998 .

[20]  R. Miranda,et al.  ATOMISTIC MECHANISM OF SURFACTANT-ASSISTED EPITAXIAL GROWTH , 1998 .

[21]  Yu-Jun Zhao,et al.  SURFACTANT-MEDIATED LAYER-BY-LAYER HOMOEPITAXIAL GROWTH OF CU/IN/CU(100) AND AG/SB/AG(111) SYSTEMS : A THEORETICAL STUDY , 1998 .

[22]  D. Pettifor,et al.  Atomistic simulation of titanium. I. A bond-order potential , 1998 .

[23]  R. David,et al.  Surfactant-Induced Layer-by-Layer Growth on a Highly Anisotropic Substrate: Co/Cu(110) , 1998 .

[24]  Yu-Jun Zhao,et al.  A theoretical study of surfactant action in the layer-by-layer homoepitaxial growth of metals: the case of In on Cu(111) , 1998 .

[25]  Paolo Gargini,et al.  The SIA's 1997 National Technology Roadmap for Semiconductors : SIA roadmap preview , 1998 .

[26]  D. Pettifor,et al.  Bond-Order Potentials for Molybdenum and Niobium: An Assessment of Their Quality , 1998 .

[27]  M. Stiles,et al.  Oxygen as a Surfactant in the Growth of Giant Magnetoresistance Spin Valves , 1997 .

[28]  R. Johnson,et al.  Vacancy formation during vapor deposition , 1997 .

[29]  Keikichi G. Nakamura,et al.  Kinetics of oxygen surfactant in Cu(001) homoepitaxial growth , 1997 .

[30]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[31]  R. Belkhou,et al.  Photoelectron diffraction evidence for a surface substitutional site of Sb in the Sb-induced smooth growth of Ag on Ag(111) , 1997 .

[32]  J. Ha,et al.  Ag growth on Si(111) with an Sb surfactant investigated by scanning tunneling microscopy , 1997 .

[33]  C. Ammer,et al.  Growth of Cu films on annealed Cu/O/Ru(0001) studied by STM , 1997 .

[34]  T. Lewowski,et al.  EFFECT OF SURFACTANT AND SUBSTRATE TEMPERATURE ON THE GROWTH OF Ag FILMS ON A SAPPHIRE SURFACE , 1997 .

[35]  Haydn N. G. Wadley,et al.  A MOLECULAR DYNAMICS STUDY OF NICKEL VAPOR DEPOSITION: TEMPERATURE, INCIDENT ANGLE, AND ADATOM ENERGY EFFECTS , 1997 .

[36]  Y. G. Yang,et al.  A Monte Carlo simulation of the physical vapor deposition of nickel , 1997 .

[37]  H. Urbassek Molecular-dynamics simulation of sputtering , 1997 .

[38]  E. Vlieg,et al.  Surfactants used in Ag(111) homoepitaxy: Sb, In, Pt and O2 , 1996 .

[39]  Kirschner,et al.  Surfactant-mediated modification of the magnetic properties of Co/Cu(111) thin films and superlattices. , 1996, Physical review letters.

[40]  R. Behm,et al.  Reversible place-exchange during film growth: a mechanism for surfactant transport , 1996 .

[41]  K. Herwig,et al.  Comparative investigation of the nucleation and growth of fcc-metal particles (Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) on amorphous carbon and SiO2 substrates during vapor deposition at elevated temperatures , 1996 .

[42]  T. Michely,et al.  The effect of surface reconstruction on the growth mode in homoepitaxy , 1996 .

[43]  H. Wadley,et al.  Monte Carlo Modeling of Atom Transport During Directed Vapor Deposition , 1996 .

[44]  CONFORMALITY AND COMPOSITION OF FILMS DEPOSITED AT LOW PRESSURES , 1996 .

[45]  D. G. Pettifor,et al.  Bonding and Structure of Molecules and Solids , 1995 .

[46]  He,et al.  Mechanistic study of atomic desorption resulting from the keV-ion bombardment of fcc{001} single-crystal metals. , 1995, Physical review. B, Condensed matter.

[47]  W. Husinsky,et al.  Molecular dynamics studies of cluster emission in sputtering , 1995 .

[48]  C. Tsang,et al.  Overview Of Progress In Giant Magnetoresistive Sensors Based On NiFe/Ag Multilayers , 1995, Digest of the Magnetic Recording Conference 'Magnetic Recording Heads'.

[49]  K. Wandelt,et al.  On the influence of adsorbates on heteroepitaxy: work function oscillations during deposition of copper on platinum (111) , 1995 .

[50]  H. Urbassek,et al.  Energy deposition, reflection and sputtering in hyperthermal rare-gas→Cu bombardment , 1995 .

[51]  E. Vlieg,et al.  The effect of Sb on the nucleation and growth of Ag on Ag(100) , 1995 .

[52]  Meyer,et al.  Importance of the additional step-edge barrier in determining film morphology during epitaxial growth. , 1995, Physical review. B, Condensed matter.

[53]  J. Kools EFFECT OF ENERGETIC PARTICLE BOMBARDMENT DURING SPUTTER DEPOSITION ON THE PROPERTIES OF EXCHANGE-BIASED SPIN-VALVE MULTILAYERS , 1995 .

[54]  M. Scheffler,et al.  Towards an understanding of surfactant action in the epitaxial growth of metals: The case of Sb on Ag (111) , 1995 .

[55]  Zhang,et al.  Ultrathin films of Pt on TiO2(110): Growth and chemisorption-induced surfactant effects. , 1995, Physical review. B, Condensed matter.

[56]  James A. Sethian,et al.  A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography I: Algorithms and T , 1995 .

[57]  T. C. Anthony,et al.  Magnetoresistance of symmetric spin valve structures , 1994 .

[58]  Heinz,et al.  Surfactant-induced suppression of twin formation during growth of fcc Co/Cu superlattices on Cu(111). , 1994, Physical review letters.

[59]  Meyer,et al.  Surfactant-induced layer-by-layer growth of Ag on Ag(111): Origins and side effects. , 1994, Physical review letters.

[60]  K. Wandelt,et al.  Surfactant induced layer-by-layer growth of Cu on Ru(0001) as revealed by oscillatory work function changes , 1993 .

[61]  S. Honda,et al.  Giant magnetoresistance in Co/Cu multilayers sputter-deposited on glass substrates , 1993 .

[62]  Rosenfeld,et al.  Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth. , 1993, Physical review letters.

[63]  Scheffler,et al.  Theory of adsorption and surfactant effect of Sb on Ag(111). , 1993, Physical review letters.

[64]  Lee,et al.  Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. , 1993, Physical review. B, Condensed matter.

[65]  M. Kushner,et al.  Monte Carlo hydrodynamic simulation of neutral radical transport in low pressure remote plasma activated chemical vapor deposition , 1993 .

[66]  J. M. Sanchez,et al.  Nanophases and nanocrystalline structures , 1993 .

[67]  Fe/Cu/Fe and Co/Cu/Co multilayers on Cu , 1992 .

[68]  Klavs F. Jensen,et al.  Analysis of Transition Regime Flows in Low Pressure Chemical Vapor Deposition Reactors Using the Direct Simulation Monte Carlo Method , 1992 .

[69]  Thornton,et al.  Surfactant-induced layer-by-layer growth of Ag on Ag(111). , 1992, Physical review letters.

[70]  Roger Smith,et al.  A semi-empirical many-body interatomic potential for modelling dynamical processes in gallium arsenide , 1992 .

[71]  U. Littmark,et al.  Morphological effects induced by the formation of a Pt-adatom lattice gas on Pt(111) , 1992 .

[72]  Winters,et al.  Energy transfer from noble-gas ions to surfaces: Collisions with carbon, silicon, copper, silver, and gold in the range 100-4000 eV. , 1991, Physical review. B, Condensed matter.

[73]  J. B. Adams,et al.  EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt , 1991 .

[74]  S. Parkin,et al.  Giant magnetoresistance in antiferromagnetic Co/Cu multilayers , 1991 .

[75]  Wolfgang Eckstein,et al.  Computer simulation of ion-solid interactions , 1991 .

[76]  Garrison,et al.  Angular distribution of Rh atoms desorbed from ion-bombarded Rh{100}: Effect of local environment. , 1990, Physical Review B (Condensed Matter).

[77]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[78]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[79]  Winters,et al.  Energy transfer from rare gases to surfaces: Collisions with gold and platinum in the range 1-4000 eV. , 1990, Physical review. B, Condensed matter.

[80]  Johnson Alloy models with the embedded-atom method. , 1989, Physical review. B, Condensed matter.

[81]  Daw Model of metallic cohesion: The embedded-atom method. , 1989, Physical review. B, Condensed matter.

[82]  K. Terakura,et al.  Electronic theory for phase stability of nine AB binary alloys, with A=Ni, Pd, or Pt and B=Cu, Ag, or Au. , 1989, Physical review. B, Condensed matter.

[83]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[84]  Ralph J. Hecht,et al.  The durability and performance of coatings in gas turbine and diesel engines , 1987 .

[85]  Watanabe,et al.  Electronic theory of the alloy phase stability of Cu-Ag, Cu-Au, and Ag-Au systems. , 1987, Physical review. B, Condensed matter.

[86]  J. Biersack,et al.  Self-sputtering and reflection , 1986 .

[87]  Foiles,et al.  Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. , 1985, Physical review. B, Condensed matter.

[88]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[89]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[90]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[91]  J. Biersack,et al.  Sputtering studies with the Monte Carlo Program TRIM.SP , 1984 .

[92]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[93]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[94]  Mark T. Robinson,et al.  Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation , 1974 .

[95]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[96]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[97]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[98]  E. Pitkin,et al.  Sputtering at Acute Incidence , 1965 .

[99]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[100]  M. Robinson,et al.  Sputtering Experiments with 1‐ to 5‐keV Ar+ Ions , 1963 .

[101]  M. Koedam,et al.  Sputtering of polycrystalline metals by inert gas ions of low energy (100–1000 eV) , 1961 .