Towards artificial neurons and synapses: a materials point of view

We overview several efforts to emulate functionalities of basic building blocks, i.e. neurons and synapses, of a mammal’s brain by means of non-biological inorganic systems. These efforts have been put to realize ambitious goals such as the achievement of artificial inorganic brains on silicon wafers, i.e. neuromorphic systems, and neuroprosthetic systems taking part in real brain functionalities by interfacing with real brains. In terms of the keywords, ‘threshold’, ‘analogue’, ‘plasticity’, and ‘elasticity’, which describe the behaviour of neurons and synapses, various functional systems, with particular emphasis on nanoionic systems, exhibiting these key behaviours, are dealt with in this review.

[1]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[2]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[3]  Y. Jan,et al.  Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. , 1987, Science.

[4]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[5]  R. Nicoll,et al.  NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms , 1993, Trends in Neurosciences.

[6]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[7]  Jong-Ho Lee,et al.  Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory , 2012 .

[8]  T. Teyler,et al.  Two forms of long-term potentiation in area CA1 activate different signal transduction cascades. , 1996, Journal of neurophysiology.

[9]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[10]  B. Diény,et al.  Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions , 2009 .

[11]  David C. Gadsby,et al.  Ion channels versus ion pumps: the principal difference, in principle , 2009, Nature Reviews Molecular Cell Biology.

[12]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. Waser,et al.  Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere , 2008 .

[14]  P. Krzysteczko,et al.  Memristive switching of MgO based magnetic tunnel junctions , 2009, 0907.3684.

[15]  A. Hodgkin,et al.  Action Potentials Recorded from Inside a Nerve Fibre , 1939, Nature.

[16]  Doo Seok Jeong,et al.  Threshold resistive and capacitive switching behavior in binary amorphous GeSe , 2012 .

[17]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[18]  T. Morie,et al.  Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks , 2012 .

[19]  Roberto Malinow,et al.  Learning Mechanisms: The Case for CaM-KII , 1997, Science.

[20]  Yuichi Kanaoka,et al.  Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence , 1984, Nature.

[21]  Howard C. Card,et al.  Silicon models of associative learning in Aplysia , 1990, Neural Networks.

[22]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[23]  M. Kozicki,et al.  Electrochemical metallization cells—blending nanoionics into nanoelectronics? , 2012 .

[24]  Adam Z. Stieg,et al.  Neuromorphic Atomic Switch Networks , 2012, PloS one.

[25]  J. Nowak,et al.  High-bias backhopping in nanosecond time-domain spin-torque switches of MgO-based magnetic tunnel junctions , 2009 .

[26]  Jimeng Sun,et al.  Back-hopping after spin torque transfer induced magnetization switching in magnetic tunneling junction cells , 2009 .

[27]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[28]  T. Hasegawa,et al.  Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch , 2011 .

[29]  James F. Scott,et al.  Formation of magnetite in bismuth ferrrite under voltage stressing , 2007 .

[30]  D. Querlioz,et al.  Visual Pattern Extraction Using Energy-Efficient “2-PCM Synapse” Neuromorphic Architecture , 2012, IEEE Transactions on Electron Devices.

[31]  Paul E. Hasler,et al.  Floating Gate Synapses With Spike-Time-Dependent Plasticity , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[32]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[33]  Rainer Waser,et al.  Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors , 2008 .

[34]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[35]  Jong-Ho Lee,et al.  Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magnéli filaments , 2011 .

[36]  Bruce H. Mahan Microscopic reversibility and detailed balance. An analysis , 1975 .

[37]  J. Lisman The CaM kinase II hypothesis for the storage of synaptic memory , 1994, Trends in Neurosciences.

[38]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[39]  R. Waser,et al.  TiO2—a prototypical memristive material , 2011, Nanotechnology.

[40]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[41]  J. C. Phillips,et al.  Stretched exponential relaxation in molecular and electronic glasses , 1996 .

[42]  F. Bezanilla,et al.  Voltage-gated ion channels , 2005, IEEE Transactions on NanoBioscience.

[43]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[44]  J. H. Coombs,et al.  Laser‐induced crystallization phenomena in GeTe‐based alloys. II. Composition dependence of nucleation and growth , 1995 .

[45]  Xing Hua Li,et al.  Memristors: Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor (Adv. Funct. Mater. 13/2012) , 2012 .

[46]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[47]  Robert M. May,et al.  The ecology of the ecological literature , 1976, Nature.

[48]  R. Douglas,et al.  A silicon neuron , 1991, Nature.

[49]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[50]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Theodore Leng,et al.  The Artificial Synapse Chip: a flexible retinal interface based on directed retinal cell growth and neurotransmitter stimulation. , 2003, Artificial organs.

[52]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  E. Kandel,et al.  Prospectuses of Neurobiology. (Book Reviews: From Neuron to Brain. A Cellular Approach to the Function of the Nervous System; The Cellular Basis of Behavior. An Introduction to Behavioral Neurobiology) , 1976 .

[54]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[55]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[56]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[57]  Kyoobin Lee,et al.  Synaptic behaviors of a single metal–oxide–metal resistive device , 2011 .

[58]  L. Chua Memristor-The missing circuit element , 1971 .

[59]  H. Ishiwara,et al.  An electrically modifiable synapse array composed of metal-ferroelectric-semiconductor (MFS) FET's using SrBi/sub 2/Ta/sub 2/O/sub 9/ thin films , 1999, IEEE Electron Device Letters.

[60]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[61]  James F. Scott,et al.  Domain wall nanoelectronics , 2012 .

[62]  M. Ziegler,et al.  An Electronic Version of Pavlov's Dog , 2012 .

[63]  Joseph E. LeDoux,et al.  LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit , 1995, Neuron.

[64]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[65]  H. Hwang,et al.  Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device , 2011, Nanotechnology.

[66]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[67]  Junichi Akita,et al.  Pulse number control of electrical resistance for multi-level storage based on phase change , 2007 .

[68]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[69]  Giacomo Indiveri,et al.  Artificial Cognitive Systems: From VLSI Networks of Spiking Neurons to Neuromorphic Cognition , 2009, Cognitive Computation.

[70]  V. Weidenhof,et al.  Minimum time for laser induced amorphization of Ge2Sb2Te5 films , 2000 .

[71]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[72]  M. Berggren,et al.  Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. , 2007, Nature materials.

[73]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[74]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[75]  Siddharth Gaba,et al.  Synaptic behaviors and modeling of a metal oxide memristive device , 2011 .

[76]  Zhiyong Li,et al.  Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions , 2010, Advanced materials.

[77]  H. Ishiwara Proposal of Adaptive-Learning Neuron Circuits with Ferroelectric Analog-Memory Weights , 1993 .

[78]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[79]  Amy Wenzel,et al.  One hundred years of forgetting: A quantitative description of retention , 1996 .

[80]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[81]  M. Bear,et al.  A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity , 2011, Proceedings of the National Academy of Sciences.

[82]  O. Cueto,et al.  Physical aspects of low power synapses based on phase change memory devices , 2012 .

[83]  Edwin Jager,et al.  Translating Electronic Currents to Precise Acetylcholine–Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device , 2009 .

[84]  Kōji Kobayashi,et al.  Computers and Communications , 1985 .

[85]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[86]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[87]  S. Ha,et al.  Adaptive oxide electronics: A review , 2011 .

[88]  M. Blumenkranz,et al.  Localized chemical release from an artificial synapse chip. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[89]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[90]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[91]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[92]  S. Levinson,et al.  Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[94]  Hai Helen Li,et al.  Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion , 2009, IEEE Electron Device Letters.

[95]  F. A. Kröger,et al.  Relations between the Concentrations of Imperfections in Crystalline Solids , 1956 .

[96]  Lawrence T. Clark,et al.  Ferroelectric thin-film memory for electrically programmable IC neural networks , 1991 .

[97]  X. Lou,et al.  Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films. , 2006, Physical review letters.

[98]  A. Thomas,et al.  The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse‐Neuron System , 2012, Advanced materials.

[99]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[100]  Joseph Classen,et al.  L-Type Voltage-Gated Ca2+ Channels: A Single Molecular Switch for Long-Term Potentiation/Long-Term Depression-Like Plasticity and Activity-Dependent Metaplasticity in Humans , 2010, The Journal of Neuroscience.

[101]  J. F. Scott,et al.  Phase Separation of Bismuth Ferrite into Magnetite under Voltage Stressing , 2007 .

[102]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[103]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[104]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[105]  J Astrup,et al.  Oxygen and glucose consumption related to Na+-K+ transport in canine brain. , 1981, Stroke.

[106]  C. Toyoshima,et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution , 2009, Nature.