Detection of stellar light from quasar host galaxies at redshifts above 6

[1]  Yue Shen,et al.  Characterization of JWST NIRCam PSFs and Implications for AGN+host Image Decomposition , 2023, The Astrophysical Journal.

[2]  G. Brammer,et al.  JWST/NIRSpec Balmer-line Measurements of Star Formation and Dust Attenuation at z~3-6 , 2023, 2301.03241.

[3]  Xiaohui Fan,et al.  Quasars and the Intergalactic Medium at Cosmic Dawn , 2022, Annual Review of Astronomy and Astrophysics.

[4]  S. Lilly,et al.  EIGER. II. First Spectroscopic Characterization of the Young Stars and Ionized Gas Associated with Strong Hβ and [O iii] Line Emission in Galaxies at z = 5–7 with JWST , 2022, The Astrophysical Journal.

[5]  L. Ho,et al.  Demographics of z ∼ 6 quasars in the black hole mass-luminosity plane , 2022, Monthly Notices of the Royal Astronomical Society.

[6]  Yue Shen,et al.  A close quasar pair in a disk–disk galaxy merger at z = 2.17 , 2022, Nature.

[7]  J. Silverman,et al.  Opening the Era of Quasar-host Studies at High Redshift with JWST , 2022, 2209.03359.

[8]  J. Silverman,et al.  On the Connection between Supermassive Black Holes and Galaxy Growth in the Reionization Epoch , 2022, The Astrophysical Journal Letters.

[9]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS) , 2022, Astronomy & Astrophysics.

[10]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities , 2022, Astronomy & Astrophysics.

[11]  K. Jahnke,et al.  Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of JWST , 2022, 2201.09892.

[12]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XVI. 69 New Quasars at 5.8 < z < 7.0 , 2021, The Astrophysical Journal Supplement Series.

[13]  K. Inayoshi,et al.  Rapid Growth of Seed Black Holes during Early Bulge Formation , 2021, 2110.10693.

[14]  J. Silverman,et al.  Synchronized Coevolution between Supermassive Black Holes and Galaxies over the Last Seven Billion Years as Revealed by Hyper Suprime-Cam , 2021, The Astrophysical Journal.

[15]  Sebastian Wagner-Carena,et al.  lenstronomy II: A gravitational lensing software ecosystem , 2021, J. Open Source Softw..

[16]  J. Silverman,et al.  The Sizes of Quasar Host Galaxies in the Hyper Suprime-Cam Subaru Strategic Program , 2021, The Astrophysical Journal.

[17]  H. Rottgering,et al.  Limits to Rest-frame Ultraviolet Emission from Far-infrared-luminous z ≃ 6 Quasar Hosts , 2020, The Astrophysical Journal.

[18]  L. Pentericci,et al.  Astraeus – II. Quantifying the impact of cosmic variance during the Epoch of Reionization , 2020, 2004.11096.

[19]  K. Jahnke,et al.  The Mass Relations between Supermassive Black Holes and Their Host Galaxies at 1 < z < 2 with HST-WFC3 , 2019, The Astrophysical Journal.

[20]  K. Jahnke,et al.  Major Mergers Are Not the Dominant Trigger for High-accretion AGNs at z ∼ 2 , 2019, The Astrophysical Journal.

[21]  T. Treu,et al.  Massive Dead Galaxies at z ∼ 2 with HST Grism Spectroscopy. I. Star Formation Histories and Metallicity Enrichment , 2018, The Astrophysical Journal.

[22]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[23]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.

[24]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[25]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[26]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 ≤ z ≤ 7.0 , 2019, The Astrophysical Journal.

[27]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[28]  Xiaoyi Dong,et al.  HERSCHEL OBSERVED STRIPE 82 QUASARS AND THEIR HOST GALAXIES: CONNECTIONS BETWEEN AGN ACTIVITY AND HOST GALAXY STAR FORMATION , 2016, 1604.06189.

[29]  J. Gunn,et al.  SUBARU HIGH-z EXPLORATION OF LOW-LUMINOSITY QUASARS (SHELLQs). I. DISCOVERY OF 15 QUASARS AND BRIGHT GALAXIES AT 5.7 < z < 6.9 , 2016, 1603.02281.

[30]  K. Jahnke,et al.  DO THE MOST MASSIVE BLACK HOLES AT z = 2 GROW VIA MAJOR MERGERS? , 2015, 1510.08461.

[31]  K. Schawinski,et al.  MAJOR MERGERS HOST THE MOST-LUMINOUS RED QUASARS AT z ∼ 2: A HUBBLE SPACE TELESCOPE WFC3/IR STUDY , 2015, 1504.02111.

[32]  A. Fontana,et al.  The galaxy stellar mass function at 3.5 ≤z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields , 2015 .

[33]  R. Bouwens,et al.  UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.

[34]  H. Rottgering,et al.  NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 , 2012, 1207.3283.

[35]  T. Treu,et al.  A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. I. METHODOLOGY AND RESULTS OF PILOT STUDY , 2010, 1008.4602.

[36]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[37]  Marcia J. Rieke,et al.  Overview of James Webb Space Telescope and NIRCam's Role , 2005, SPIE Optics + Photonics.

[38]  H. Rix,et al.  Ultraviolet Light from Young Stars in GEMS Quasar Host Galaxies at 1.8 < z < 2.75 , 2004, astro-ph/0403462.

[39]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[40]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[41]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[42]  V. Narayanan,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[43]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[44]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[45]  S. Lilly,et al.  EIGER. I. A Large Sample of [O iii]-emitting Galaxies at 5.3 < z < 6.9 and Direct Evidence for Local Reionization by Galaxies , 2023 .