Stable PID Active Control of Building Structures

In this chapter, we analyze the stability of the active vibration control system for both linear and nonlinear structures. We give explicit sufficient conditions for choosing the PID gains. The theory conclusions are verified via numerical simulations and a two-story building prototype. These results give validation of our theory analysis.

[1]  Rafael Kelly,et al.  Semiglobal stability of saturated linear PID control for robot manipulators , 2003, Autom..

[2]  Kazuto Seto A structural control method of the vibration of flexible buildings in response to large earthquakes and strong winds , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[3]  Jann N. Yang,et al.  Sliding mode control with compensator for wind and seismic response control , 1997 .

[4]  Billie F. Spencer,et al.  Controlling buildings: a new frontier in feedback , 1997 .

[5]  Frank L. Lewis,et al.  Robot Manipulator Control: Theory and Practice , 2003 .

[6]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[7]  Tso-Liang Teng,et al.  A study on the application of fuzzy theory to structural active control , 2000 .

[8]  Rahmi Guclu,et al.  Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers , 2008 .

[9]  Tore Hägglund,et al.  Automatic Tuning and Adaptation for PID Controllers—A Survey , 1992 .

[10]  Hyung-Jo Jung,et al.  Optimal structural control using neural networks , 2000 .

[11]  T. K. Datta,et al.  A state-of-the-art review on active control of structures , 2003 .

[12]  Wonsuk Park,et al.  Active control of large structures using a bilinear pole-shifting transform with H∞ control method , 2008 .

[13]  T. T. Soong,et al.  STRUCTURAL CONTROL USING ACTIVE TUNED MASS DAMPERS , 1980 .

[14]  Nicholas Fisco,et al.  Smart structures: Part I—Active and semi-active control , 2011 .

[15]  Nicholas Fisco,et al.  Smart structures: Part II — Hybrid control systems and control strategies , 2011 .

[16]  Xinghuo Yu,et al.  Sliding-Mode Control With Soft Computing: A Survey , 2009, IEEE Transactions on Industrial Electronics.

[17]  Rahmi Guclu,et al.  Sliding mode and PID control of a structural system against earthquake , 2006, Math. Comput. Model..

[18]  R. Krishnan,et al.  Active control strategies for tall civil structures , 1995, Proceedings of IECON '95 - 21st Annual Conference on IEEE Industrial Electronics.

[19]  Wen Yu,et al.  Advances in modeling and vibration control of building structures , 2013, Annu. Rev. Control..

[20]  Amir Khajepour,et al.  Active Control of Structures Using Energy‐Based LQR Method , 2006, Comput. Aided Civ. Infrastructure Eng..

[21]  H. Du,et al.  H∞ control for buildings with time delay in control via linear matrix inequalities and genetic algorithms , 2008 .

[22]  Chin-Hsiung Loh,et al.  GA-optimized fuzzy logic control of a large-scale building for seismic loads , 2008 .

[23]  Roberd Saragih,et al.  Designing active vibration control with minimum order for flexible structure , 2010, IEEE ICCA 2010.

[24]  T. T. Soong,et al.  STRUCTURAL CONTROL: PAST, PRESENT, AND FUTURE , 1997 .

[25]  K. Åström,et al.  Revisiting the Ziegler-Nichols step response method for PID control , 2004 .

[26]  Michael C. Constantinou,et al.  Semi-active control systems for seismic protection of structures: a state-of-the-art review , 1999 .

[27]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .